Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(10): e202400065, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38406969

RESUMO

Introducing chirality into soft materials, including liquid crystals (LCs), profoundly impacts their self-organization and physical properties. In this study, we synthesized a novel series of LC dimers with a chiral center as part of their flexible spacer. The dimers were prepared in racemic and enantiomerically pure forms. Their spacer length and parity were varied to investigate the effect of spacer chirality and parity on mesomorphic behavior and on chiral induction in the nematic phase of achiral mesogens. Our results show that the even-membered chiral dimers only have chiral nematic phases. In contrast, the odd-membered dimers display rich mesomorphism, including the intriguing blue phase (BP) and chiral form of the twist-bend nematic phase (N*TB). The observed significant difference in the 3D surface morphology between the racemic and chiral forms of the N*TB phase suggests that the chiral moiety in the spacer promotes a chiral hierarchy. Furthermore, the chiral dimers show a prominent odd-even effect in the helical twisting power in nematic hosts. These findings highlight the importance of the position of the chiral group within the dimeric molecule and provide new insights into how intrinsic chirality in the spacer affects the overall structural chirality.

2.
J Org Chem ; 87(21): 14045-14057, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36221167

RESUMO

Chiral liquid crystals (LCs) with their unique optical and mechanical properties are perspective functional soft materials for fundamental science and advanced technological applications. Herein, we introduce the chiral 3-aryl-3-hydroxypropanoic ester moiety as a versatile building block for the preparation of LC compounds. Three chiral subunits differing in the aromatic part were obtained through asymmetric transfer hydrogenation using Ru(II) complexes with ee from 98% to >99%. Chiral LC compounds of diverse topologies were further prepared without deterioration of the ee during the synthesis. The mesomorphic behavior of rod-shaped, bent-shaped flexible dimeric, and polycatenar LCs is consistent with their topology─chiral nematic and smectic phases were identified as well as the rarely observed twist grain boundary A and blue phases. The utilization of synthetic chiral building blocks offers the possibility of fine tuning the intermolecular interactions by subtle changes in the molecular structure as well as the preparation of the corresponding racemic forms. This paves the way for the study of self-organization and the structure-property relationship in chiral soft materials.

3.
Soft Matter ; 14(42): 8466-8474, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30324187

RESUMO

The synthesis and liquid-crystalline properties are reported for novel bent-shaped dimers in which a naphthyl group has been incorporated into the mesogenic cores. In addition to the nematic and twist-bend nematic phase, a new liquid-crystalline phase was observed. The combined experimental and computational study demonstrated how the interplay between the molecular geometry and π-π interactions affects the thermal stability of the twist-bend nematic and nematic phases. Correlation between mesomorphic properties and molecular geometry revealed that a greater conformational diversity leads to a broader distribution of bend-angles and destabilization of the NTB phase. Qualitative correlation between the thermal behaviour and electronic structure of the molecules of a similar geometry suggested that the transition temperatures of both nematic phases depend on the relative contribution of dispersion and electrostatic energies which determines the strength of the π-π interactions. These results provide an insight into how subtle changes in chemical structure can be exploited to tune the intermolecular interactions and influence the thermal stability of the liquid crystalline phase.

4.
Beilstein J Nanotechnol ; 9: 1297-1307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765808

RESUMO

The investigation of liquid crystal (LC) mixtures is of great interest in tailoring material properties for specific applications. The recent discovery of the twist-bend nematic phase (NTB) has sparked great interest in the scientific community, not only from a fundamental viewpoint, but also due to its potential for innovative applications. Here we report on the unexpected phase behaviour of a binary mixture of twist-bend nematogens. A binary phase diagram for mixtures of imino-linked cyanobiphenyl (CBI) dimer and imino-linked benzoyloxy-benzylidene (BB) dimer shows two distinct domains. While mixtures containing less than 35 mol % of BB possess a wide temperature range twist-bend nematic phase, the mixtures containing 55-80 mol % of BB exhibit a smectic phase despite that both pure compounds display a Iso-N-NTB-Cr phase sequence. The phase diagram shows that the addition of BB of up to 30 mol % significantly extends the temperature range of the NTB phase, maintaining the temperature range of the nematic phase. The periodicity, obtained by atomic force microscopy (AFM) imaging, is in the range of 6-7 nm. The induction of the smectic phase in the mixtures containing 55-80 mol % of BB was confirmed using polarising optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction. The origin of the intercalated smectic phase was unravelled by combined spectroscopic and computational methods and can be traced to conformational disorder of the terminal chains. These results show the importance of understanding the phase behaviour of binary mixtures, not only in targeting a wide temperature range but also in controlling the self-organizing processes.

6.
Soft Matter ; 10(46): 9334-42, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25346366

RESUMO

Although liquid-crystalline materials are most widely exploited for flat-panel displays, their ability to self-organize into periodically ordered nanostructures gives rise to a broad variety of additional applications. The recently discovered low-temperature nematic phase (N(TB)) with unusual characteristics generated considerable attention within the scientific community: despite the fact that the molecules from which the phase is composed are not chiral, the helicoidal structure of the phase is strongly implicated. Here we report on combined experimental, computational and spectroscopic studies of the structural aspects influencing formation of the N(TB) phase as well as on the molecular organization within the phase. In an extensive DFT study, the structure-property prerequisite was traced to a "bent-propeller" shape of the molecule. We also demonstrate the first utilization of liquid state NMR for direct analysis of intermolecular interactions within thermotropic liquid-crystalline phases, providing new insight into molecular packing that can lead towards design of novel chiral functional materials. The synergy of experimental, computational and NMR studies suggests a syn-parallel helical molecular organization within the N(TB) phase.

7.
J Phys Chem B ; 117(29): 8918-29, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23819801

RESUMO

Three new series of symmetric dimers containing a naphthoyloxybenzyl (NB), benzoyloxynaphthyl (BN), and naphthoyloxysalicyl (NS) mesogenic core linked to an alkylene spacer via an imino group were synthesized. The effects of the variant spacer parity as well as the variant core structure on the mesomorphic properties have been studied. The dimers having NB and BN mesogenic units display intercalated smectic structures regardless of the spacer parity. In contrast, bilayer smectic and Colrec structures are observed for the NS core compounds with even and odd spacers, respectively. The influence of geometric and electronic factors on the mesomorphic behavior, in particular on the molecular packing within the smectic phase, is discussed based on conformational and dipolar considerations following DFT calculations using model molecules. The difference in self-organization of symmetric naphthyl-based dimers appears to be governed by the competition between geometric factors and dipole-dipole interactions between identical mesogenic units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA