Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 7(12): 5666-5677, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34813288

RESUMO

Systemic lupus erythematosus (SLE) causes damaging inflammation in multiple organs via the accumulation of immune complexes. These complexes activate plasmacytoid dendritic cells (pDCs) via toll-like receptors (TLRs), contributing to disease pathogenesis by driving the secretion of inflammatory type I interferons (IFNs). Antimalarial drugs, such as chloroquine (CQ), are TLR antagonists used to alleviate inflammation in SLE. However, they require ∼3 months of continuous use before achieving therapeutic efficacy and can accumulate in the retinal pigment epithelium with chronic use, resulting in retinopathy. We hypothesized that poly(ethylene glycol)-b-poly(propylene sulfide) filamentous nanocarriers, filomicelles (FMs), could directly deliver CQ to pDCs via passive, morphology-based targeting to concentrate drug delivery to specific immune cells, improve drug activity by increased inhibition of type I IFN, and enhance efficacy per dose. Healthy human peripheral blood mononuclear cells were treated with soluble CQ or CQ-loaded FMs, stimulated with TLR agonists or SLE patient sera, and type I IFN secretion was quantified via multi-subtype IFN-α ELISA and MX1 gene expression using real-time reverse transcription-quantitative polymerase chain reaction. Our results showed that 50 µg CQ/mg FM decreased MX1 expression and IFN-α production after TLR activation with either synthetic nucleic acid agonists or immune complex-rich sera from SLE patients. Cellular uptake and biodistribution studies showed that FMs preferentially accumulate in human pDCs and monocytes in vitro and in tissues frequently damaged in SLE patients (i.e., kidneys), while sparing the eye in vivo. These results showed that nanocarrier morphology enables drug delivery, and CQ-FMs may be equally effective and more targeted than soluble CQ at inhibiting SLE-relevant pathways.


Assuntos
Interferon Tipo I , Cloroquina/farmacologia , Células Dendríticas/metabolismo , Humanos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/metabolismo , Distribuição Tecidual , Receptor Toll-Like 9
2.
ACS Appl Mater Interfaces ; 12(50): 55584-55595, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259182

RESUMO

Magnetic nanostructures (MNS) have a wide range of biological applications due to their biocompatibility, superparamagnetic properties, and customizable composition that includes iron oxide (Fe3O4), Zn2+, and Mn2+. However, several challenges to the biomedical usage of MNS must still be addressed, such as formulation stability, inability to encapsulate therapeutic payloads, and variable clearance rates in vivo. Here, we enhance the utility of MNS during controlled delivery applications via encapsulation within polymeric bicontinuous nanospheres (BCNs) composed of poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-b-PPS) copolymers. PEG-b-PPS BCNs have demonstrated versatile encapsulation and delivery capabilities for both hydrophilic and hydrophobic payloads due to their unique and highly organized cubic phase nanoarchitecture. MNS-embedded BCNs (MBCNs) were thus coloaded with physicochemically diverse molecular payloads using the technique of flash nanoprecipitation and characterized in terms of their structure and in vivo biodistribution following intravenous administration. Retention of the internal aqueous channels and cubic architecture of MBCNs were verified using cryogenic transmission electron microscopy and small-angle X-ray scattering, respectively. MBCNs demonstrated improvement in magnetic resonance imaging (MRI) contrast enhancement (r2 relaxivity) as compared to free MNS, which in combination with scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy evidenced the clustering and continued access to water of MNS following encapsulation. Furthermore, MBCNs were found to be noncytotoxic and able to deliver their hydrophilic and hydrophobic small-molecule payloads both in vitro and in vivo. Finally, the oxidation sensitivity of the hydrophobic PPS block allowed MBCNs to undergo a unique, triggerable transition in morphology into MNS-bearing micellar nanocarriers. In summary, MBCNs are an attractive platform for the delivery of molecular and nanoscale payloads for diverse on-demand and sustained drug delivery applications.


Assuntos
Nanopartículas de Magnetita/química , Nanosferas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Feminino , Óxido Ferroso-Férrico/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/química , Fígado/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Nanosferas/metabolismo , Nanosferas/toxicidade , Oxirredução , Polietilenoglicóis/química , Sulfetos/química , Distribuição Tecidual
3.
Nat Commun ; 11(1): 4896, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994414

RESUMO

Natural biomolecules such as peptides and DNA can dynamically self-organize into diverse hierarchical structures. Mimicry of this homopolymer self-assembly using synthetic systems has remained limited but would be advantageous for the design of adaptive bio/nanomaterials. Here, we report both experiments and simulations on the dynamic network self-assembly and subsequent collapse of the synthetic homopolymer poly(propylene sulfone). The assembly is directed by dynamic noncovalent sulfone-sulfone bonds that are susceptible to solvent polarity. The hydration history, specified by the stepwise increase in water ratio within lower polarity water-miscible solvents like dimethylsulfoxide, controls the homopolymer assembly into crystalline frameworks or uniform nanostructured hydrogels of spherical, vesicular, or cylindrical morphologies. These electrostatic hydrogels have a high affinity for a wide range of organic solutes, achieving >95% encapsulation efficiency for hydrophilic small molecules and biologics. This system validates sulfone-sulfone bonding for dynamic self-assembly, presenting a robust platform for controllable gelation, nanofabrication, and molecular encapsulation.


Assuntos
Hidrogéis/síntese química , Polipropilenos/síntese química , Sulfonas/química , Alcenos/química , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Polipropilenos/química , Eletricidade Estática
4.
Nanoscale ; 11(3): 1091-1102, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30574649

RESUMO

Porous metal nanofoams have made significant contributions to a diverse set of technologies from separation and filtration to aerospace. Nonetheless, finer control over nano and microscale features must be gained to reach the full potential of these materials in energy storage, catalytic, and sensing applications. As biologics naturally occur and assemble into nano and micro architectures, templating on assembled biological materials enables nanoscale architectural control without the limited chemical scope or specialized equipment inherent to alternative synthetic techniques. Here, we rationally assemble 1D biological templates into scalable, 3D structures to fabricate metal nanofoams with a variety of genetically programmable architectures and material chemistries. We demonstrate that nanofoam architecture can be modulated by manipulating viral assembly, specifically by editing the viral surface coat protein, as well as altering templating density. These architectures were retained over a broad range of compositions including monometallic and bi-metallic combinations of noble and transition metals of copper, nickel, cobalt, and gold. Phosphorous and boron incorporation was also explored. In addition to increasing the surface area over a factor of 50, as compared to the nanofoam's geometric footprint, this process also resulted in a decreased average crystal size and altered phase composition as compared to non-templated controls. Finally, templated hydrogels were deposited on the centimeter scale into an array of substrates as well as free standing foams, demonstrating the scalability and flexibility of this synthetic method towards device integration. As such, we anticipate that this method will provide a platform to better study the synergistic and de-coupled effects between nano-structure and composition for a variety of applications including energy storage, catalysis, and sensing.


Assuntos
Nanoestruturas/química , Bacteriófago M13/química , Bacteriófago M13/metabolismo , Técnicas Biossensoriais , Boro/química , Catálise , Hidrogéis/química , Metais/química , Fósforo/química , Porosidade , Sais/química
5.
Sci Rep ; 7(1): 11410, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900283

RESUMO

Adenoid cystic carcinomas (ACC) are rare salivary gland cancers with a high incidence of metastases. In order to study this tumor type, a reliable model system exhibiting the molecular features of this tumor is critical, but none exists, thereby inhibiting in-vitro studies and the analysis of metastatic behavior. To address this deficiency, we have coupled an efficient method to establish tumor cell cultures, conditional reprogramming (CR), with a rapid, reproducible and robust in-vivo zebrafish model. We have established cell cultures from two individual ACC PDX tumors that maintain the characteristic MYB translocation. Additional mutations found in one ACC culture also seen in the PDX tumor. Finally, the CR/zebrafish model mirrors the PDX mouse model and identifies regorafenib as a potential therapeutic drug to treat this cancer type that mimic the drug sensitivity profile in PDX model, further confirming the unique advantages of multiplex system.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Adenoide Cístico/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Neoplasias das Glândulas Salivares/tratamento farmacológico , Animais , Biomarcadores Tumorais , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Camundongos , Repetições de Microssatélites , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA