Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33787495

RESUMO

Some RIG-I-like receptors (RLRs) discriminate viral and cellular dsRNA by their termini, and Drosophila melanogaster Dicer-2 (dmDcr-2) differentially processes dsRNA with blunt or 2 nucleotide 3'-overhanging termini. We investigated the transient kinetic mechanism of the dmDcr-2 reaction using a rapid reaction stopped-flow technique and time-resolved fluorescence spectroscopy. Indeed, we found that ATP binding to dmDcr-2's helicase domain impacts association and dissociation kinetics of dsRNA in a termini-dependent manner, revealing termini-dependent discrimination of dsRNA on a biologically relevant time scale (seconds). ATP hydrolysis promotes transient unwinding of dsRNA termini followed by slow rewinding, and directional translocation of the enzyme to the cleavage site. Time-resolved fluorescence anisotropy reveals a nucleotide-dependent modulation in conformational fluctuations (nanoseconds) of the helicase and Platform-PAZ domains that is correlated with termini-dependent dsRNA cleavage. Our study offers a kinetic framework for comparison to other Dicers, as well as all members of the RLRs involved in innate immunity.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , RNA Helicases/química , Ribonuclease III/química , Trifosfato de Adenosina/metabolismo , Animais , Cinética
2.
RNA ; 25(9): 1192-1201, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239298

RESUMO

Protein kinase RNA-activated (PKR) is an interferon-inducible kinase that is potently activated by long double-stranded RNA (dsRNA). In a previous study, we found that snoRNAs exhibit increased association with PKR in response to metabolic stress. While it was unclear if snoRNAs also activated PKR in cells, activation in vitro was observed. snoRNAs do not exhibit the double-stranded character typically required for activation of PKR, but some studies suggest such RNAs can activate PKR if triphosphorylated at the 5' terminus, or if they are able to form intermolecular dimers. To interrogate the mechanism of PKR activation by snoRNAs in vitro we focused on SNORD113. Using multiple methods for defining the 5'-phosphorylation state, we find that activation of PKR by SNORD113 does not require a 5'-triphosphate. Gel purification from a native gel followed by analysis using analytical ultracentrifugation showed that dimerization was also not responsible for activation. We isolated distinct conformers of SNORD113 from a native polyacrylamide gel and tracked the activating species to dsRNA formed from antisense RNA synthesized during in vitro transcription with T7 RNA polymerase. Similar studies with additional snoRNAs and small RNAs showed the generality of our results. Our studies suggest that a 5' triphosphate is not an activating ligand for PKR, and emphasize the insidious nature of antisense contamination.


Assuntos
Ativação Enzimática/genética , Polifosfatos/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , Humanos , Ligantes , Fosforilação/genética , Ligação Proteica/genética , RNA de Cadeia Dupla/genética , RNA Nucleolar Pequeno/genética , Transcrição Gênica/genética , Ultracentrifugação/métodos , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA