Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 37(9): 1733-1749, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35773783

RESUMO

Biallelic ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) deficiency induces vascular/soft tissue calcifications in generalized arterial calcification of infancy (GACI), and low bone mass with phosphate-wasting rickets in GACI survivors (autosomal hypophosphatemic rickets type-2). ENPP1 haploinsufficiency induces early-onset osteoporosis and mild phosphate wasting in adults. Both conditions demonstrate the unusual combination of reduced accrual of skeletal mineral, yet excess and progressive heterotopic mineralization. ENPP1 is the only enzyme that generates extracellular pyrophosphate (PPi), a potent inhibitor of both bone and heterotopic mineralization. Life-threatening vascular calcification in ENPP1 deficiency is due to decreased plasma PPi; however, the mechanism by which osteopenia results is not apparent from an understanding of the enzyme's catalytic activity. To probe for catalysis-independent ENPP1 pathways regulating bone, we developed a murine model uncoupling ENPP1 protein signaling from ENPP1 catalysis, Enpp1T238A mice. In contrast to Enpp1asj mice, which lack ENPP1, Enpp1T238A mice have normal trabecular bone microarchitecture and favorable biomechanical properties. However, both models demonstrate low plasma Pi and PPi, increased fibroblast growth factor 23 (FGF23), and by 23 weeks, osteomalacia demonstrating equivalent phosphate wasting in both models. Reflecting findings in whole bone, calvarial cell cultures from Enpp1asj mice demonstrated markedly decreased calcification, elevated transcription of Sfrp1, and decreased nuclear ß-catenin signaling compared to wild-type (WT) and Enpp1T238A cultures. Finally, the decreased calcification and nuclear ß-catenin signaling observed in Enpp1asj cultures was restored to WT levels by knockout of Sfrp1. Collectively, our findings demonstrate that catalysis-independent ENPP1 signaling pathways regulate bone mass via the expression of soluble Wnt inhibitors such as secreted frizzled-related protein 1 (SFRP1), whereas catalysis dependent pathways regulate phosphate homeostasis through the regulation of plasma FGF23. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osso e Ossos/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Animais , Catálise , Raquitismo Hipofosfatêmico Familiar , Fatores de Crescimento de Fibroblastos , Mamíferos/metabolismo , Camundongos , Fosfatos/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Calcificação Vascular , beta Catenina
2.
J Bone Miner Res ; 37(6): 1125-1135, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35340077

RESUMO

Homozygous ENPP1 mutations are associated with autosomal recessive hypophosphatemic rickets type 2 (ARHR2), severe ossification of the spinal ligaments, and generalized arterial calcification of infancy type 1. There are a limited number of reports on phenotypes associated with heterozygous ENPP1 mutations. Here, we report a series of three probands and their families with heterozygous and compound heterozygous ENPP1 mutations. The first case (case 1) was a 47-year-old male, diagnosed with early-onset osteoporosis and low-normal serum phosphate levels, which invoked suspicion for hypophosphatemic rickets. The second and third cases were 77- and 54-year-old females who both presented with severe spinal ligament ossification and the presumptive diagnosis of diffuse idiopathic skeletal hyperostosis (DISH). Upon workup, fibroblast growth factor 23 (FGF23) was noted to be relatively high in case 2 and serum phosphorous was low-normal in case 3, and the diagnoses of X-linked hypophosphatemic rickets (XLH) and ARHR2 were considered. Genetic testing for genes related to congenital hypophosphatemic rickets was therefore performed, revealing heterozygous ENPP1 variants in cases 1 and 2 (case 1, c.536A>G, p.Asn179Ser; case 2, c.1352A>G, p.Tyr451Cys) and compound heterozygous ENPP1 variants in case 3 constituting the same variants present in cases 1 and 2 (c.536A>G, p.Asn179Ser and c.1352A>G, p.Tyr451Cys). Several in silico tools predicted the two variants to be pathogeneic, a finding confirmed by in vitro biochemical analysis demonstrating that the p.Asn179Ser and p.Tyr451Cys ENPP1 variants possessed a catalytic velocity of 45% and 30% compared with that of wild-type ENPP1, respectively. Both variants were therefore categorized as pathogenic loss-of-function mutations. Our findings suggest that ENPP1 mutational status should be evaluated in patients presenting with the diagnosis of idiopathic DISH, ossification of the posterior longitudinal ligament (OPLL), and early-onset osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hiperostose Esquelética Difusa Idiopática , Osteoporose , Raquitismo Hipofosfatêmico , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Haploinsuficiência , Humanos , Hiperostose Esquelética Difusa Idiopática/complicações , Masculino , Osteoporose/complicações , Osteoporose/genética , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Raquitismo Hipofosfatêmico/complicações
3.
J Bone Miner Res ; 37(3): 494-504, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34882836

RESUMO

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) deficiency leads to cardiovascular calcification in infancy, fibroblast growth factor 23 (FGF23)-mediated hypophosphatemic rickets in childhood, and osteomalacia in adulthood. Excessive enthesis mineralization and cervical spine fusion have been previously reported in patients with biallelic ENPP1 deficiency, but their effect on quality of life is unknown. We describe additional musculoskeletal complications in patients with ENPP1 deficiency, namely osteoarthritis and interosseous membrane ossification, and for the first time evaluate health-related quality of life (HRQoL) in patients with this disease, both subjectively via narrative report, and objectively via the Brief Pain Inventory-Short Form, and a Patient Reported Outcome Measurement Information System Physical Function (PROMIS PF) short form. Residual pain, similar in magnitude to that identified in adult patients with X-linked hypophosphatemia, was experienced by the majority of patients despite use of analgesic medications. Impairment in physical function varied from mild to severe. To assess murine ENPP1 deficiency for the presence of enthesopathy, and for the potential response to enzyme replacement therapy, we maintained Enpp1asj/asj mice on regular chow for 23 weeks and treated cohorts with either vehicle or a long-acting form of recombinant ENPP1. Enpp1asj/asj mice treated with vehicle exhibited robust calcification throughout their Achilles tendons, whereas two-thirds of those treated with ENPP1 enzyme replacement exhibited complete or partial suppression of the Achilles tendon calcification. Our combined results document that musculoskeletal complications are a significant source of morbidity in biallelic ENPP1 deficiency, a phenotype which is closely recapitulated in Enpp1asj/asj mice. Finally, we show that a long-acting form of recombinant ENPP1 prevents the development of enthesis calcification at the relatively modest dose of 0.3 mg/kg per week, suggesting that suppression of enthesopathy may be attainable upon dose escalation. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Entesopatia , Raquitismo Hipofosfatêmico Familiar , Calcificação Vascular , Adulto , Animais , Modelos Animais de Doenças , Entesopatia/tratamento farmacológico , Entesopatia/genética , Terapia de Reposição de Enzimas , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Fatores de Crescimento de Fibroblastos , Humanos , Masculino , Camundongos , Dor , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Qualidade de Vida , Calcificação Vascular/genética
4.
J Bone Miner Res ; 36(5): 942-955, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465815

RESUMO

Inactivating mutations in human ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) may result in early-onset osteoporosis (EOOP) in haploinsufficiency and autosomal recessive hypophosphatemic rickets (ARHR2) in homozygous deficiency. ARHR2 patients are frequently treated with phosphate supplementation to ameliorate the rachitic phenotype, but elevating plasma phosphorus concentrations in ARHR2 patients may increase the risk of ectopic calcification without increasing bone mass. To assess the risks and efficacy of conventional ARHR2 therapy, we performed comprehensive evaluations of ARHR2 patients at two academic medical centers and compared their skeletal and renal phenotypes with ENPP1-deficient Enpp1asj/asj mice on an acceleration diet containing high phosphate treated with recombinant murine Enpp1-Fc. ARHR2 patients treated with conventional therapy demonstrated improvements in rickets, but all adults and one adolescent analyzed continued to exhibit low bone mineral density (BMD). In addition, conventional therapy was associated with the development of medullary nephrocalcinosis in half of the treated patients. Similar to Enpp1asj/asj mice on normal chow and to patients with mono- and biallelic ENPP1 mutations, 5-week-old Enpp1asj/asj mice on the high-phosphate diet exhibited lower trabecular bone mass, reduced cortical bone mass, and greater bone fragility. Treating the Enpp1asj/asj mice with recombinant Enpp1-Fc protein between weeks 2 and 5 normalized trabecular bone mass, normalized or improved bone biomechanical properties, and prevented the development of nephrocalcinosis and renal failure. The data suggest that conventional ARHR2 therapy does not address low BMD inherent in ENPP1 deficiency, and that ENPP1 enzyme replacement may be effective for correcting low bone mass in ARHR2 patients without increasing the risk of nephrocalcinosis. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Terapia de Reposição de Enzimas , Fosfatos , Adolescente , Animais , Suplementos Nutricionais , Humanos , Camundongos , Fenótipo , Diester Fosfórico Hidrolases/genética , Pirofosfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA