Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 409: 108327, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388681

RESUMO

CACHD1 recently was shown to be an α2δ-like subunit that can modulate the activity of some types of voltage-gated calcium channels, including the low-voltage activated, T-type CaV3 channels. CACHD1 is widely expressed in the central nervous system but its biological functions and relationship to disease states are unknown. Here, we report that mice with deleterious Cachd1 mutations are hearing impaired and have balance defects, demonstrating that CACHD1 is functionally important in the peripheral auditory and vestibular organs of the inner ear. The vestibular dysfunction of Cachd1 mutant mice, exhibited by leaning and head tilting behaviors, is related to a deficiency of calcium carbonate crystals (otoconia) in the saccule and utricle. The auditory dysfunction, shown by ABR threshold elevations and reduced DPOAEs, is associated with reduced endocochlear potentials and increased endolymph calcium concentrations. Paint-fills of mutant inner ears from prenatal and newborn mice revealed dilation of the membranous labyrinth caused by an enlarged volume of endolymph. These pathologies all can be related to a disturbance of calcium homeostasis in the endolymph of the inner ear, presumably caused by the loss of CACHD1 regulatory effects on voltage-gated calcium channel activity. Cachd1 expression in the cochlea appears stronger in late embryonic stages than in adults, suggesting an early role in establishing endolymph calcium concentrations. Our findings provide new insights into CACHD1 function and suggest the involvement of voltage-gated calcium channels in endolymph homeostasis, essential for normal auditory and vestibular function.


Assuntos
Audição , Homeostase , Animais , Animais Recém-Nascidos , Cálcio , Canais de Cálcio , Feminino , Camundongos , Gravidez , Vestíbulo do Labirinto
2.
Hum Mol Genet ; 26(19): 3722-3735, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934385

RESUMO

Mutations of the human ATP6V1B1 gene cause distal renal tubular acidosis (dRTA; OMIM #267300) often associated with sensorineural hearing impairment; however, mice with a knockout mutation of Atp6v1b1 were reported to exhibit a compensated acidosis and normal hearing. We discovered a new spontaneous mutation (vortex, symbol vtx) of Atp6v1b1 in an MRL/MpJ (MRL) colony of mice. In contrast to the reported phenotype of the knockout mouse, which was developed on a primarily C57BL/6 (B6) strain background, MRL-Atp6v1b1vtx/vtx mutant mice exhibit profound hearing impairment, which is associated with enlarged endolymphatic compartments of the inner ear. Mutant mice have alkaline urine but do not exhibit overt metabolic acidosis, a renal phenotype similar to that of the Atpbv1b1 knockout mouse. The abnormal inner ear phenotype of MRL- Atp6v1b1vtx/vtx mice was lost when the mutation was transferred onto the C57BL/6J (B6) background, indicating the influence of strain-specific genetic modifiers. To genetically map modifier loci in Atp6v1b1vtx/vtx mice, we analysed ABR thresholds of progeny from a backcross segregating MRL and B6 alleles. We found statistically significant linkage with a locus on Chr 13 that accounts for about 20% of the hearing threshold variation in the backcross mice. The important effect that genetic background has on the inner ear phenotype of Atp6v1b1 mutant mice provides insight into the hearing loss variability associated with dRTA caused by ATP6V1B1 mutations. Because MRL-Atp6v1b1vxt/vtx mice do not recapitulate the metabolic acidosis of dRTA patients, they provide a new genetic model for nonsyndromic deafness with enlarged vestibular aqueduct (EVA; OMIM #600791).


Assuntos
Surdez/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Acidose/genética , Acidose/metabolismo , Acidose Tubular Renal/genética , Acidose Tubular Renal/metabolismo , Animais , Surdez/metabolismo , Modelos Animais de Doenças , Orelha Interna/patologia , Feminino , Ligação Genética , Perda Auditiva/genética , Perda Auditiva/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Aqueduto Vestibular/metabolismo , Aqueduto Vestibular/fisiologia
3.
Hear Res ; 249(1-2): 1-14, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19141317

RESUMO

Cochlear stria vascularis contains melanin-producing intermediate cells that play a critical role in the production of the endocochlear potential (EP) and in maintaining the high levels of K(+) that normally exist in scala media. The melanin produced by intermediate cells can be exported to the intrastrial space, where it may be taken up by strial marginal cells and basal cells. Because melanin can act as an antioxidant and metal chelator, evidence for its role in protecting the stria and organ of Corti against noise, ototoxins, and aging has long been sought. While some evidence supports a protective role of melanin against noise and ototoxins, no evidence yet presented has demonstrated a clear role for melanin in maintaining the EP during aging. We tested this by comparing basal turn EPs and a host of cochlear cellular metrics in aging C57BL/6 (B6) mice and C57BL/6-Tyr(c-2J) mice. The latter mice carry a naturally occurring inactivating mutation of the tyrosinase locus, and produce no strial melanin. Because these two strains are coisogenic, and because pigmented B6 mice show essentially no age-related EP decline, they provide an ideal test of importance of melanin in the aging stria. Pigmented and albino B6 mice showed identical rates of hearing loss and sensory cell loss. However, after two years of age, basal turn EPs significantly diverged, with 42% of albinos showing EPs below 100 mV versus only 18% of pigmented mice. The clearest anatomical correlate of this EP difference was significantly reduced strial thickness in the albinos that was highly correlated with loss of marginal cells. Combined with findings in human temporal bones, plus recent work in BALB/c mice and gerbils, the present findings point to a common etiology in strial presbycusis whereby EP reduction is principally linked to marginal cell loss or dysfunction. For any individual, genetic background, environmental influences, and stochastic events may work together to determine whether marginal cell density or function falls below some critical level, and thus whether EP decline occurs.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Potenciais Microfônicos da Cóclea/fisiologia , Melaninas/deficiência , Estria Vascular/patologia , Estria Vascular/fisiologia , Animais , Capilares/patologia , Contagem de Células , Modelos Animais de Doenças , Feminino , Células Ciliadas Auditivas/patologia , Humanos , Masculino , Melaninas/genética , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Monofenol Mono-Oxigenase/deficiência , Monofenol Mono-Oxigenase/genética , Neurônios/patologia , Pigmentação/fisiologia , Presbiacusia/etiologia , Presbiacusia/genética , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Junções Íntimas/patologia
4.
Hear Res ; 220(1-2): 10-26, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16901664

RESUMO

Age-related degeneration of cochlear stria vascularis and resulting reduction in the endocochlear potential (EP) are the hallmark features of strial presbycusis, one of the major forms of presbycusis, or age-related hearing loss (ARHL) (Schuknecht, H.F., 1964. Further observations on the pathology of presbycusis. Archives of Otolaryngology 80, 369-382; Schuknecht, H.F., 1993. Pathology of the Ear. Lea and Febiger, Philadelphia; Schuknecht, H.F., Gacek, M.R., 1993. Cochlear pathology in presbycusis. Annals of Otology, Rhinology and Laryngology 102, 1-16). It is unclear whether there are multiple forms of strial ARHL having different sequences of degenerative events and different risk factors. Human temporal bone studies suggest that the initial pathology usually affects strial marginal cells, then spreads to other strial cell types. While inheritance studies support a moderate genetic influence, no contributing genes have been identified. Establishment of mouse models of strial ARHL may promote the identification of underlying genes and gene/environment interactions. We have found that BALB/cJ mice show significant EP reduction by 19 months of age. The reduction only occurs in a subset of animals. To identify key anatomical correlates of the EP reduction, we compared several cochlear lateral wall metrics in BALBs with those in C57BL/6J (B6) mice, which show little EP reduction for ages up to 26 months. Among the measures obtained, marginal cell density and spiral ligament thickness were the best predictors of both the EP decline in BALBs, and EP stability in B6. Our results indicate that the sequence of strial degeneration in BALBs is like that suggested for humans. Additional strain comparisons we have performed suggest that genes governing strial melanin production do not play a role.


Assuntos
Cóclea/fisiopatologia , Presbiacusia/patologia , Estria Vascular/patologia , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Limiar Auditivo/fisiologia , Cóclea/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Presbiacusia/fisiopatologia , Análise de Regressão , Estria Vascular/fisiologia
5.
Hear Res ; 169(1-2): 69-84, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12121741

RESUMO

Mucopolysaccharidosis type VII (MPS VII, Sly syndrome) is caused by dysfunction of the acid hydrolase beta-D-glucuronidase. The defect results in the accumulation of incompletely degraded glycosaminoglycans within lysosomes of a wide array of cell types. MPS VII is associated with mixed (conductive and sensorineural) hearing loss, vision defects, shortened stature, mental retardation and decreased lifespan. Whether the sensorineural component of hearing loss in MPS VII involves degeneration of cochlear sensory cells is not yet clear. The MPS VII mouse resembles its human counterpart in all major aspects, and has been the focus of extensive research seeking to correct MPS VII and other lysosomal storage diseases. The value of potential treatments for this hearing loss can be determined only if cochlear pathology in this model is well characterized. We examined threshold sensitivity, frequency tuning, hair cell density and the appearance of the cochlea and vestibular organs in MPS VII mice ranging from 1.0 to 7.5 months of age. At all ages, lysosomal storage is pronounced within cells of spiral limbus, spiral prominence, spiral ligament and glial cells, but not within organ of Corti, stria vascularis, or neurons. Within the vestibular maculae and cristae, both hair cells and supporting cells also show lysosomal storage. Although hearing thresholds are never normal, reduction in the sharpness of frequency tuning is not apparent until 2.5 months of age, suggesting that the sensorineural component of hearing loss begins in adulthood. No evidence was found for cell loss within the organ of Corti, or any other structure, however. Our results suggest that sensorineural hearing loss in the MPS VII mouse is not caused by degeneration, but may arise from alterations in mass and stiffness of cochlear structures or impaired sensory cell function. They also indicate a possible vestibular component in MPS VII.


Assuntos
Orelha Interna/patologia , Mucopolissacaridose VII/genética , Mucopolissacaridose VII/patologia , Potenciais de Ação , Animais , Limiar Auditivo , Contagem de Células , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva Condutiva/genética , Perda Auditiva Condutiva/patologia , Perda Auditiva Condutiva/fisiopatologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Mucopolissacaridose VII/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA