Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Endocrinol ; 175(5): 421-31, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27666534

RESUMO

BACKGROUND: Homozygous inactivating mutations of the calcium-sensing receptor (CaSR) lead to neonatal severe hyperparathyroidism (NSHPT), whereas heterozygous inactivating mutations result in familial hypocalciuric hypercalcemia (FHH). It is unknown why in some cases heterozygous CaSR mutations cause neonatal hyperparathyroidism (NHPT) clinically similar to NSHPT but with only moderately elevated serum calcium. METHODS: A literature survey was conducted to identify patients with heterozygous CaSR mutations and NHPT. The common NHPT CaSR mutants R185Q and R227L were compared with 15 mutants causing only FHH in the heterozygous state. We studied in vitro calcium signaling including the functional consequences of co-expression of mutant and wild-type (wt) CaSR, patients' phenotype, age of disease manifestation and mode of inheritance. RESULTS: All inactivating CaSR mutants impaired calcium signaling of wt-CaSR regardless of the patients' clinical phenotype. The absolute intracellular calcium signaling response to physiologic extracellular calcium concentrations in vitro showed a high correlation with patients' serum calcium concentrations in vivo, which is similar in NHPT and FHH patients with the same genotype. Pedigrees of FHH families revealed that paternal inheritance per se does not necessarily lead to NHPT but may only cause FHH. CONCLUSIONS: There is a significant correlation between in vitro functional impairment of the CaSR at physiologic calcium concentrations and the severity of alterations in calcium homeostasis in patients. Whether a particular genotype leads to NHPT or FHH appears to depend on additional predisposing genetic or environmental factors. An individual therapeutic approach appears to be warranted for NHPT patients.


Assuntos
Sinalização do Cálcio/genética , Heterozigoto , Hiperparatireoidismo/genética , Doenças do Recém-Nascido/genética , Mutação , Receptores de Detecção de Cálcio/genética , Cálcio/metabolismo , Feminino , Genótipo , Homeostase/genética , Humanos , Hiperparatireoidismo/congênito , Recém-Nascido , Masculino , Fenótipo
2.
PLoS One ; 9(12): e115178, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506941

RESUMO

INTRODUCTION: Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants. METHODS: All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914. RESULTS: All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants. CONCLUSION: The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations.


Assuntos
Síndrome de Bartter/genética , Sinalização do Cálcio/efeitos dos fármacos , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Naftalenos/farmacologia , Quinazolinonas/farmacologia , Receptores de Detecção de Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/genética , Células HEK293 , Humanos , Hipoparatireoidismo/genética , Mutação , Receptores de Detecção de Cálcio/genética
3.
J Clin Endocrinol Metab ; 99(6): E1146-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24517148

RESUMO

CONTEXT: Heterozygous inactivating calcium-sensing receptor (CaSR) mutations lead to familial hypocalciuric hypercalcemia (FHH), whereas homozygous mutations usually cause neonatal severe hyperparathyroidism. OBJECTIVE: The objective of the study was to investigate the pathophysiological mechanisms of a homozygous inactivating CaSR mutation identified in a 16-year-old female. DESIGN: Clinical, biochemical, and genetic analyses of the index patient and her family were performed. Functional capacity of CaSRQ459R and CaSR mutants causing FHH (Q27R, P39A, S417C) or neonatal severe hyperparathyroidism (W718X) was assessed. Activation of the cytosolic calcium pathway and inhibition of PTH-induced cAMP signaling were measured. RESULTS: A 16-year-old girl presented with adolescent rickets, vitamin D deficiency, and secondary hyperparathyroidism. Vitamin D treatment unmasked features resembling FHH, and genetic testing revealed a homozygous CaSRQ459R mutation. Two apparently healthy siblings were homozygous for CaSRQ459R and had asymptomatic hypercalcemia and hypocalciuria. The CaSRQ459R mutation leads to mild functional inactivation in vitro, which explains the FHH-like phenotype in homozygous family members and the grossly exaggerated PTH response to vitamin D deficiency in the index case. The patient's parents and two other siblings were heterozygous, had normal serum calcium and PTH, but had marked hypocalciuria, which appeared to be associated with impaired in vitro activation of the calcium signaling pathway by CaSRQ459R. The Q459R mutation responded well to calcimimetic treatment in vitro. CONCLUSION: CaSR mutations causing mild functional impairment can lead to FHH, even in homozygous patients. The skeletal deformities in the index case were mainly due to severe vitamin D deficiency, and the CaSR mutation did not appear to have played a major independent role in the skeletal phenotype.


Assuntos
Hipercalcemia/congênito , Receptores de Detecção de Cálcio/genética , Raquitismo/diagnóstico , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/genética , Adolescente , Diagnóstico Diferencial , Feminino , Homozigoto , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Raquitismo/genética
4.
J Clin Endocrinol Metab ; 95(10): E229-33, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668040

RESUMO

CONTEXT AND OBJECTIVE: Activating mutations in the calcium-sensing receptor (CaSR) gene cause autosomal dominant hypocalcemia (ADH). The aims of the present study were the functional characterization of novel mutations of the CaSR found in patients, the comparison of in vitro receptor function with clinical parameters, and the effect of the allosteric calcilytic NPS-2143 on the signaling of mutant receptors as a potential new treatment for ADH patients. METHODS: Wild-type and mutant CaSR (T151R, P221L, E767Q, G830S, and A844T) were expressed in human embryonic kidney cells (HEK 293T). Receptor signaling was studied by measuring intracellular free calcium in response to different concentrations of extracellular calcium ([Ca(2+)](o)) in the presence or absence of NPS-2143. RESULTS: All ADH patients had lowered serum calcium ranging from 1.7 to 2.0 mm and inadequate intact PTH and urinary calcium excretion. In vitro testing of CaSR mutations from these patients revealed exaggerated [Ca(2+)](o)-induced cytosolic Ca(2+) responses with EC(50) values for [Ca(2+)](o) ranging from 1.56 to 3.15 mM, which was lower than for the wild-type receptor (4.27 mM). The calcilytic NPS-2143 diminished the responsiveness to [Ca(2+)](o) in the CaSR mutants T151R, E767Q, G830S, and A844T. The mutant P221L, however, was only responsive when coexpressed with the wild-type CaSR. CONCLUSION: Calcilytics might offer medical treatment for patients with autosomal dominant hypocalcemia caused by calcilytic-sensitive CaSR mutants.


Assuntos
Mutação , Naftalenos/farmacologia , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/genética , Cálcio/metabolismo , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipocalcemia/genética , Mutação/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA