Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(5): e0425522, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587411

RESUMO

tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.


Assuntos
Candida albicans , Candidíase , Proteínas Fúngicas , Hifas , RNA de Transferência , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Virulência/genética , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candidíase/microbiologia , Hifas/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Animais , Candida/patogenicidade , Candida/genética , Candida/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Células Epiteliais/microbiologia
2.
Genes (Basel) ; 12(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799543

RESUMO

SMITER (Synthetic mzML writer) is a Python-based command-line tool designed to simulate liquid-chromatography-coupled tandem mass spectrometry LC-MS/MS runs. It enables the simulation of any biomolecule amenable to mass spectrometry (MS) since all calculations are based on chemical formulas. SMITER features a modular design, allowing for an easy implementation of different noise and fragmentation models. By default, SMITER uses an established noise model and offers several methods for peptide fragmentation, and two models for nucleoside fragmentation and one for lipid fragmentation. Due to the rich Python ecosystem, other modules, e.g., for retention time (RT) prediction, can easily be implemented for the tailored simulation of any molecule of choice. This facilitates the generation of defined gold-standard LC-MS/MS datasets for any type of experiment. Such gold standards, where the ground truth is known, are required in computational mass spectrometry to test new algorithms and to improve parameters of existing ones. Similarly, gold-standard datasets can be used to evaluate analytical challenges, e.g., by predicting co-elution and co-fragmentation of molecules. As these challenges hinder the detection or quantification of co-eluents, a comprehensive simulation can identify and thus, prevent such difficulties before performing actual MS experiments. SMITER allows the creation of such datasets easily, fast, and efficiently.


Assuntos
Algoritmos , Nucleosídeos , Linguagens de Programação , Espectrometria de Massas em Tandem , Cromatografia Líquida
3.
J Proteome Res ; 20(4): 1986-1996, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33514075

RESUMO

The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.


Assuntos
Algoritmos , Software , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Ferramenta de Busca
4.
Front Genet ; 11: 856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014012

RESUMO

Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells.

5.
RNA ; 24(10): 1403-1417, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30012570

RESUMO

Post-transcriptional chemical modifications of (t)RNA molecules are crucial in fundamental biological processes, such as translation. Despite their biological importance and accumulating evidence linking them to various human diseases, technical challenges have limited their detection and accurate quantification. Here, we present a sensitive capillary nanoflow liquid chromatography mass spectrometry (nLC-MS) pipeline for quantitative high-resolution analysis of ribonucleoside modifications from complex biological samples. We evaluated two porous graphitic carbon (PGC) materials and one end-capped C18 reference material as stationary phases for reversed-phase separation. We found that these matrices have complementing retention and separation characteristics, including the capability to separate structural isomers. PGC and C18 matrices yielded excellent signal-to-noise ratios in nLC-MS while differing in the separation capability and sensitivity for various nucleosides. This emphasizes the need for tailored LC-MS setups for optimally detecting as many nucleoside modifications as possible. Detection ranges spanning up to six orders of magnitude enable the analysis of individual ribonucleosides down to femtomol concentrations. Furthermore, normalizing the obtained signal intensities to a stable isotope labeled spike-in enabled direct comparison of ribonucleoside levels between different samples. In conclusion, capillary columns coupled to nLC-MS constitute a powerful and sensitive tool for quantitative analysis of modified ribonucleosides in complex biological samples. This setup will be invaluable for further unraveling the intriguing and multifaceted biological roles of RNA modifications.


Assuntos
Cromatografia Líquida , Espectrometria de Massas , Ribonucleosídeos/análise , Ribonucleosídeos/química , Cromatografia Líquida/métodos , Grafite/química , Humanos , Espectrometria de Massas/métodos , RNA Bacteriano , RNA Fúngico , RNA de Transferência/química , Ribonucleosídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
6.
Mol Cell Proteomics ; 16(10): 1736-1745, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28729385

RESUMO

Quantitative mass spectrometry (MS) is a key technique in many research areas (1), including proteomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by chemical formulas, universal quantification tools are highly desirable. Here, we present pyQms, an open-source software for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching that offers an accurate quality assessment of all quantifications and the ability to directly incorporate mass spectrometer accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto unexplored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes in large scale and high throughput, the most challenging task for a quantification algorithm.


Assuntos
Marcação por Isótopo/métodos , Proteoma/análise , Proteômica/métodos , Software , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Cromatografia Líquida , Glicômica , Metabolômica
7.
PLoS One ; 12(4): e0176194, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28441411

RESUMO

The biosynthesis of multiple secondary metabolites in the phytopathogenic ascomycete Fusarium fujikuroi is strongly affected by nitrogen availability. Here, we present the first genome-wide transcriptome and proteome analysis that compared the wild type and deletion mutants of the two major nitrogen regulators AreA and AreB. We show that AreB acts not simply as an antagonist of AreA counteracting the expression of AreA target genes as suggested based on the yeast model. Both GATA transcription factors affect a large and diverse set of common as well as specific target genes and proteins, acting as activators and repressors. We demonstrate that AreA and AreB are not only involved in fungal nitrogen metabolism, but also in the control of several complex cellular processes like carbon metabolism, transport and secondary metabolism. We show that both GATA transcription factors can be considered as master regulators of secondary metabolism as they affect the expression of more than half of the 47 putative secondary metabolite clusters identified in the genome of F. fujikuroi. While AreA acts as a positive regulator of many clusters under nitrogen-limiting conditions, AreB is able to activate and repress gene clusters (e.g. bikaverin) under nitrogen limitation and sufficiency. In addition, ChIP analyses revealed that loss of AreA or AreB causes histone modifications at some of the regulated gene clusters.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Fatores de Transcrição GATA/genética , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fatores de Transcrição GATA/metabolismo , Genoma Fúngico , Proteoma , Metabolismo Secundário , Transcriptoma
8.
J Proteome Res ; 15(3): 788-94, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26709623

RESUMO

Proteomics data integration has become a broad field with a variety of programs offering innovative algorithms to analyze increasing amounts of data. Unfortunately, this software diversity leads to many problems as soon as the data is analyzed using more than one algorithm for the same task. Although it was shown that the combination of multiple peptide identification algorithms yields more robust results, it is only recently that unified approaches are emerging; however, workflows that, for example, aim to optimize search parameters or that employ cascaded style searches can only be made accessible if data analysis becomes not only unified but also and most importantly scriptable. Here we introduce Ursgal, a Python interface to many commonly used bottom-up proteomics tools and to additional auxiliary programs. Complex workflows can thus be composed using the Python scripting language using a few lines of code. Ursgal is easily extensible, and we have made several database search engines (X!Tandem, OMSSA, MS-GF+, Myrimatch, MS Amanda), statistical postprocessing algorithms (qvality, Percolator), and one algorithm that combines statistically postprocessed outputs from multiple search engines ("combined FDR") accessible as an interface in Python. Furthermore, we have implemented a new algorithm ("combined PEP") that combines multiple search engines employing elements of "combined FDR", PeptideShaker, and Bayes' theorem.


Assuntos
Algoritmos , Proteômica/métodos , Ferramenta de Busca , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Peptídeos/análise , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA