Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 5593, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961067

RESUMO

Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Neuraminidase , Pandemias , Neuraminidase/imunologia , Neuraminidase/genética , Animais , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vírus da Influenza A Subtipo H3N2/imunologia , Feminino , Reações Cruzadas/imunologia , Camundongos , Influenza Humana/imunologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Idoso , Vírus da Influenza A Subtipo H2N2/imunologia , Vírus da Influenza A Subtipo H2N2/genética , Masculino , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Aves/virologia , Pessoa de Meia-Idade , Influenza Aviária/epidemiologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Vírus da Influenza A Subtipo H9N2/imunologia , Adulto , Proteínas Virais/imunologia , Proteínas Virais/genética
3.
Clin Infect Dis ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041887

RESUMO

BACKGROUND: Studies have reported that repeated annual vaccination may influence influenza vaccination effectiveness in the current season. METHODS: We established a 5-year randomized placebo-controlled trial of repeated influenza vaccination (Flublok, Sanofi Pasteur) in adults 18-45 years of age. In the first two years, participants received vaccination (V) or saline placebo (P) as follows: P-P, P-V, or V-V. Serum samples were collected each year just before vaccination and after 30 and 182 days. A subset of sera collected at 5 timepoints from 95 participants were tested for antibodies against vaccine strains. RESULTS: From 23 October 2020 through 11 March 2021 we enrolled and randomized 447 adults. Among vaccinated individuals, antibody titers increased between days 0 and 30 against each of the vaccine strains, with smaller increases for repeat vaccinees who on average had higher pre-vaccination titers in year 2. There were statistically significant differences in the proportion of participants achieving >=four-fold rises in antibody titer for the repeat vaccinees for influenza A(H1N1), B/Victoria and B/Yamagata, but not for A(H3N2). Among participants who received vaccination in year 2, there were no statistically significant differences between the P-V and V-V groups in geometric mean titers at day 30 or the proportions of participants with antibody titers ≥40 at day 30 for any of the vaccine strains. CONCLUSIONS: In the first two years, during which influenza did not circulate, repeat vaccinees and first-time vaccinees had similar post-vaccination geometric mean titers to all four vaccine strains, indicative of similar levels of clinical protection.

4.
medRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798684

RESUMO

Background: Studies have reported that repeated annual vaccination may influence the effectiveness of the influenza vaccination in the current season. The mechanisms underlying these differences are unclear but might include "focusing" of the adaptive immune response to older strains. Methods: We established a 5-year randomized placebo-controlled trial of repeated influenza vaccination (Flublok, Sanofi Pasteur) in adults 18-45 years of age. Participants were randomized equally between five groups, with planned annual receipt of vaccination (V) or saline placebo (P) as follows: P-P-P-P-V, P-P-P-V-V, P-P-V-V-V, P-V-V-V-V, or V-V-V-VV. Serum samples were collected each year just before vaccination and after 30 and 182 days. A subset of sera were tested by hemagglutination inhibition assays, focus reduction neutralization tests and enzyme-linked immunosorbent assays against vaccine strains. Results: From 23 October 2020 through 11 March 2021 we enrolled and randomized 447 adults. We selected sera from 95 participants at five timepoints from the first two study years for testing. Among vaccinated individuals, antibody titers increased between days 0 and 30 against each of the vaccine strains, with substantial increases for first-time vaccinees and smaller increases for repeat vaccinees, who had higher pre-vaccination titers in year 2. There were statistically significant reductions in the proportion of participants achieving a four-fold greater rise in antibody titer for the repeat vaccinees for A(H1N1), B/Victoria and B/Yamagata, but not for influenza A(H3N2). There were no statistically significant differences between groups in geometric mean titers at day 30 or the proportions of participants with antibody titers ≥40 at day 30 for any of the vaccine strains. Conclusions: In the first two years, repeat vaccinees and first-time vaccinees had similar post-vaccination geometric mean titers to all four vaccine strains, indicative of similar levels of clinical protection. The vaccine strains of A(H1N1) and A(H3N2) were updated in year 2, providing an opportunity to explore antigenic distances between those strains in humans in subsequent years.

5.
Nat Commun ; 15(1): 3210, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615070

RESUMO

Cross-reactive antibodies with Fc receptor (FcR) effector functions may mitigate pandemic virus impact in the absence of neutralizing antibodies. In this exploratory study, we use serum from a randomized placebo-controlled trial of seasonal trivalent influenza vaccination in children (NCT00792051) conducted at the onset of the 2009 H1N1 pandemic (pH1N1) and monitored for infection. We found that seasonal vaccination increases pH1N1 specific antibodies and FcR effector functions. Furthermore, prospective baseline antibody profiles after seasonal vaccination, prior to pH1N1 infection, show that unvaccinated uninfected children have elevated ADCC effector function, FcγR3a and FcγR2a binding antibodies to multiple pH1N1 proteins, past seasonal and avian (H5, H7 and H9) strains. Whereas, children that became pH1N1 infected after seasonal vaccination have antibodies focussed to seasonal strains without FcR functions, and greater aggregated HA-specific profiles for IgM and IgG3. Modeling to predict infection susceptibility, ranked baseline hemagglutination antibody inhibition as the highest contributor to lack of pH1N1 infection, in combination with features that include pH1-IgG1, H1-stem responses and FcR binding to seasonal vaccine and pH1 proteins. Thus, seasonal vaccination can have benefits against pandemic influenza viruses, and some children already have broadly reactive antibodies with Fc potential without vaccination and may be considered 'elite influenza controllers'.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estudos Prospectivos , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunoglobulina G
6.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496577

RESUMO

The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we have developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes via a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately one month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals, and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers six months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. This study demonstrates the utility of high-throughput sequencing-based neutralization assays that enable titers to be simultaneously measured against many different viral strains. We provide a detailed experimental protocol (DOI: https://dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and a computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA