Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Infect Control ; 52(4): 472-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972820

RESUMO

BACKGROUND: While airborne transmission of rhinovirus is recognized in indoor settings, its role in hospital transmission remains unclear. METHODS: We investigated an outbreak of rhinovirus in a pediatric intensive care unit (PICU) to assess air dispersal. We collected clinical, environmental, and air samples, and staff's surgical masks for viral load and phylogenetic analysis. Hand hygiene compliance and the number of air changes per hour in the PICU were measured. A case-control analysis was performed to identify nosocomial rhinovirus risk factors. RESULTS: Between March 31, 2023, and April 2, 2023, three patients acquired rhinovirus in a cubicle (air changes per hour: 14) of 12-bed PICU. A portable air-cleaning unit was placed promptly. Air samples (72,000 L in 6 hours) from the cohort area, and outer surfaces of staff's masks (n = 8), were rhinovirus RNA-negative. Hand hygiene compliance showed no significant differences (31/34, 91.2% vs 33/37, 89.2%, P = 1) before and during outbreak. Only 1 environmental sample (3.8%) was positive (1.86 × 103 copies/mL). Case-control and next-generation sequencing analysis implicated an infected staff member as the source. CONCLUSIONS: Our findings suggest that air dispersal of rhinovirus was not documented in the well-ventilated PICU during the outbreak. Further research is needed to better understand the dynamics of rhinovirus transmission in health care settings.


Assuntos
Surtos de Doenças , Rhinovirus , Criança , Humanos , Rhinovirus/genética , Filogenia , Surtos de Doenças/prevenção & controle , Unidades de Terapia Intensiva Pediátrica
2.
Lancet Microbe ; 3(5): e366-e375, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35544097

RESUMO

BACKGROUND: Despite recommendations regarding prompt treatment of cases and enhanced hygiene measures, scarlet fever outbreaks increased in England between 2014 and 2018. We aimed to assess the effects of standard interventions on transmission of Streptococcus pyogenes to classroom contacts, households, and classroom environments to inform future guidance. METHODS: We did a prospective, longitudinal, multicohort, molecular epidemiological, contact-tracing study in six settings across five schools in Greater London, UK. Schools and nurseries were eligible to participate if they had reported two cases of scarlet fever within 10 days of each other among children aged 2-8 years from the same class, with the most recent case arising in the preceding 48 h. We cultured throat swabs from children with scarlet fever, classroom contacts, and household contacts at four timepoints. We also cultured hand swabs and cough plates from all cases in years 1 and 2 of the study, and from classroom contacts in year 2. Surface swabs from toys and other fomites in classrooms were cultured in year 1, and settle plates from classrooms were collected in year 2. Any sample with S pyogenes detected was recorded as positive and underwent emm genotyping and genome sequencing to compare with the outbreak strain. FINDINGS: Six classes, comprising 12 cases of scarlet fever, 17 household contacts, and 278 classroom contacts were recruited between March 1 and May 31, 2018 (year 1), and between March 1 and May 31, 2019 (year 2). Asymptomatic throat carriage of the outbreak strains increased from 11 (10%) of 115 swabbed children in week 1, to 34 (27%) of 126 in week 2, to 26 (24%) of 108 in week 3, and then five (14%) of 35 in week 4. Compared with carriage of outbreak S pyogenes strains, colonisation with non-outbreak and non-genotyped S pyogenes strains occurred in two (2%) of 115 swabbed children in week 1, five (4%) of 126 in week 2, six (6%) of 108 in week 3, and in none of the 35 children in week 4 (median carriage for entire study 2·8% [IQR 0·0-6·6]). Genome sequencing showed clonality of outbreak isolates within each of six classes, confirming that recent transmission accounted for high carriage. When transmissibility was tested, one (9%) of 11 asymptomatic carriers of emm4 and five (36%) of 14 asymptomatic carriers of emm3.93 had a positive cough plate. The outbreak strain was identified in only one (2%) of 60 surface swabs taken from three classrooms; however, in the two classrooms with settle plates placed in elevated locations, two (17%) of 12 and six (50%) of 12 settle plates yielded the outbreak strain. INTERPRETATION: Transmission of S pyogenes in schools is intense and might occur before or despite reported treatment of cases, underlining a need for rapid case management. Despite guideline adherence, heavy shedding of S pyogenes by few classroom contacts might perpetuate outbreaks, and airborne transmission has a plausible role in its spread. These findings highlight the need for research to improve understanding and to assess effectiveness of interventions to reduce airborne transmission of S pyogenes. FUNDING: Action Medical Research, UK Research Innovation, and National Institute for Health Research.


Assuntos
Escarlatina , Criança , Busca de Comunicante , Tosse/epidemiologia , Humanos , Estudos Prospectivos , Escarlatina/epidemiologia , Streptococcus pyogenes/genética , Reino Unido/epidemiologia
4.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558227

RESUMO

The type VI secretion system (T6SS) is a phage-derived contractile nanomachine primarily involved in interbacterial competition. Its pivotal component, TssA, is indispensable for the assembly of the T6SS sheath structure, the contraction of which propels a payload of effector proteins into neighboring cells. Despite their key function, TssA proteins exhibit unexpected diversity and exist in two major forms, a short form (TssAS) and a long form (TssAL). While TssAL proteins interact with a partner, called TagA, to anchor the distal end of the extended sheath, the mechanism for the stabilization of TssAS-containing T6SSs remains unknown. Here we discover a class of structural components that interact with short TssA proteins and contribute to T6SS assembly by stabilizing the polymerizing sheath from the baseplate. We demonstrate that the presence of these components is important for full sheath extension and optimal firing. Moreover, we show that the pairing of each form of TssA with a different class of sheath stabilization proteins results in T6SS apparatuses that either reside in the cell for some time or fire immediately after sheath extension. We propose that this diversity in firing dynamics could contribute to the specialization of the T6SS to suit bacterial lifestyles in diverse environmental niches.


Assuntos
Sistemas de Secreção Tipo VI/metabolismo , Estabilidade Proteica , Pseudomonas/metabolismo , Pseudomonas/ultraestrutura , Sistemas de Secreção Tipo VI/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA