Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(17): 1726-1737, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38241630

RESUMO

ABSTRACT: For patients with high-risk or relapsed/refractory acute myeloid leukemia (AML), allogeneic stem cell transplantation (allo-HSCT) and the graft-versus-leukemia effect mediated by donor T cells, offer the best chance of long-term remission. However, the concurrent transfer of alloreactive T cells can lead to graft-versus-host disease that is associated with transplant-related morbidity and mortality. Furthermore, ∼60% of patients will ultimately relapse after allo-HSCT, thus, underscoring the need for novel therapeutic strategies that are safe and effective. In this study, we explored the feasibility of immunotherapeutically targeting neoantigens, which arise from recurrent nonsynonymous mutations in AML and thus represent attractive targets because they are exclusively present on the tumor. Focusing on 14 recurrent driver mutations across 8 genes found in AML, we investigated their immunogenicity in 23 individuals with diverse HLA profiles. We demonstrate the immunogenicity of AML neoantigens, with 17 of 23 (74%) reactive donors screened mounting a response. The most immunodominant neoantigens were IDH2R140Q (n = 11 of 17 responders), IDH1R132H (n = 7 of 17), and FLT3D835Y (n = 6 of 17). In-depth studies of IDH2R140Q-specific T cells revealed the presence of reactive CD4+ and CD8+ T cells capable of recognizing distinct mutant-specific epitopes restricted to different HLA alleles. These neo-T cells could selectively recognize and kill HLA-matched AML targets endogenously expressing IDH2R140Q both in vitro and in vivo. Overall, our findings support the clinical translation of neoantigen-specific T cells to treat relapsed/refractory AML.


Assuntos
Antígenos de Neoplasias , Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Humanos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Transplante de Células-Tronco Hematopoéticas , Imunoterapia/métodos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação
2.
Cytotherapy ; 26(3): 266-275, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231165

RESUMO

T cell receptor engineered T cell (TCR T) therapies have shown recent efficacy against certain types of solid metastatic cancers. However, to extend TCR T therapies to treat more patients across additional cancer types, new TCRs recognizing cancer-specific antigen targets are needed. Driver mutations in AKT1, ESR1, PIK3CA, and TP53 are common in patients with metastatic breast cancer (MBC) and if immunogenic could serve as ideal tumor-specific targets for TCR T therapy to treat this disease. Through IFN-γ ELISpot screening of in vitro expanded neopeptide-stimulated T cell lines from healthy donors and MBC patients, we identified reactivity towards 11 of 13 of the mutations. To identify neopeptide-specific TCRs, we then performed single-cell RNA sequencing of one of the T cell lines following neopeptide stimulation. Here, we identified an ESR1 Y537S specific T cell clone, clonotype 16, and an ESR1 Y537S/D538G dual-specific T cell clone, clonotype 21, which were HLA-B*40:02 and HLA-C*01:02 restricted, respectively. TCR Ts expressing these TCRs recognized and killed target cells pulsed with ESR1 neopeptides with minimal activity against ESR1 WT peptide. However, these TCRs failed to recognize target cells expressing endogenous mutant ESR1. To investigate the basis of this lack of recognition we performed immunopeptidomics analysis of a mutant-overexpressing lymphoblastoid cell line and found that the ESR1 Y537S neopeptide was not endogenously processed, despite binding to HLA-B*40:02 when exogenously pulsed onto the target cell. These results indicate that stimulation of T cells that likely derive from the naïve repertoire with pulsed minimal peptides may lead to the expansion of clones that recognize non-processed peptides, and highlights the importance of using methods that selectively expand T cells with specificity for antigens that are efficiently processed and presented.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Apresentação de Antígeno , Receptores de Antígenos de Linfócitos T , Mutação , Peptídeos , Antígenos HLA-B/genética
3.
Curr Opin Immunol ; 74: 46-52, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800921

RESUMO

Adoptive transfer of CD19-specific chimeric antigen receptor T-cells (CAR-T cells) has transformed the treatment paradigm of relapsed/refractory (R/R) CD19 B-cell malignancies, dramatically improving remission rates and cures in patients with chemo-refractory disease. However, the applicability of CD19 CAR-T cells is limited to B cell malignancies and antigen loss can result in treatment failure, prompting the exploration of alternative targets to overcome tumor escape via CD19 antigen loss, as well as extend the CAR-T cell platform to treat Hodgkin and T cell lymphomas. This review highlights recent clinical trials testing CAR-T cell targets beyond CD19.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Linfoma , Receptores de Antígenos Quiméricos , Antígenos CD19/imunologia , Humanos , Linfoma/imunologia , Linfoma/terapia , Recidiva Local de Neoplasia/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante
4.
Blood Adv ; 4(2): 387-397, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31985805

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative option for relapsed or refractory acute myeloid leukemia (AML). However, more than half ultimately experience disease relapse that is associated with a dismal median survival of just 6 months, highlighting the need for novel therapies. In the current study we explore the therapeutic potential of targeting cyclin A1 (CCNA1), a cancer-testis antigen that is overexpressed in malignant blasts and leukemic stem cells. We demonstrate the immunogenicity of this antigen to native T cells, with >90% of donors screened mounting a specific response. The expanded cells were Th1 polarized, polyfunctional, and cytotoxic toward CCNA1+/HLA-matched tumor cell lines. Furthermore, these cells were exquisitely specific for CCNA1 and exhibited no reactivity against other cyclin family members, including CCNA2, which shares 56% homology with CCNA1 and is ubiquitously expressed in dividing cells. Lastly, the detection of CCNA1-specific T cells in AML patients post-HSCT was associated with prolonged disease remission, suggesting the protective potential of such endogenous cells. Taken together, our findings demonstrate the feasibility of targeting CCNA1 and the potential for therapeutic benefit associated with the adoptive transfer of reactive cells.


Assuntos
Ciclina A1/imunologia , Imunoterapia Adotiva/métodos , Leucemia Mieloide/terapia , Linfócitos T/imunologia , Transferência Adotiva , Linhagem Celular Tumoral , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide/patologia , Masculino , Indução de Remissão , Células Th1 , Transplante Homólogo
5.
Curr Stem Cell Rep ; 6(2): 17-29, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738181

RESUMO

PURPOSE OF REVIEW: Virus-associated malignancies are a global health burden, constituting 10-12% of cancers worldwide. As these tumors express foreign viral antigens that can elicit specific T cell responses, virus-directed immunotherapies are a promising treatment strategy. Specifically, adoptive cell transfer of virus-specific T cells (VSTs) has demonstrated the potential to eradicate cancers associated with certain viruses. RECENT FINDINGS: Initial studies in 1990s first showed that VSTs specific for the Epstein-Barr virus (EBVSTs) can induce complete remissions in patients with post-transplant lymphoproliferative disease. Since then, studies have validated the specificity and safety of VSTs in multiple lymphomas and solid malignancies. However, challenges remain to optimize this platform for widespread use, including enhancing potency and persistence, overcoming the immunosuppressive tumor microenvironment, and streamlining manufacturing processes that comply with regulatory requirements. SUMMARY: This review focuses on data from clinical trials evaluating VSTs directed against three viruses (EBV, HPV and MCPyV), as well as recent preclinical and clinical advances, and potential future directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA