Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Chemosphere ; 361: 142501, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825244

RESUMO

In aquatic environments the concurrent exposure of molluscs to microplastics (MPs) and estrogens is common, as these pollutants are frequently released by wastewater treatment plants into estuaries. Therefore, this study aimed to evaluate the independent and co-exposure impacts of polyethylene microplastics (PE-MPs) and estrogenic endocrine-disrupting chemicals (EEDCs) at environmentally relevant concentrations on polar metabolites and morphological parameters of the Sydney rock oyster. A seven-day acute exposure revealed no discernible differences in morphology; however, significant variations in polar metabolites were observed across oyster tissues. The altered metabolites were mostly amino acids, carbohydrates and intermediates of the Kreb's cycle. The perturbation of metabolites were tissue and sex-specific. All treatments generally showed an increase of metabolites relative to controls - a possible stimulatory and/or a potential hormetic response. The presence of MPs impeded the exposure of adsorbed and free EEDCs potentially due to the selective feeding behaviour of oysters to microplastics, favouring algae over similar-sized PE-MPs, and the formation of an eco/bio-corona involving faeces, pseudo-faeces, natural organic matter, and algae.

2.
Chemosphere ; 359: 142255, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729441

RESUMO

Pharmaceutical compounds in wastewater have emerged as a significant concern for the aquatic environment. The use of in vitro bioassays represents a sustainable and cost-effective approach for assessing the potential toxicological risks of these biologically active compounds in wastewater and aligns with ethical considerations in research. It facilitates high-throughput analysis, captures mixture effects, integrates impacts of both known and unknown chemicals, and reduces reliance on animal testing. The core aim of the current review was to explore the practical application of in vitro bioassays in evaluating the environmental impacts of pharmaceuticals in wastewater. This comprehensive review strives to achieve several key objectives. First, it provides a summary categorisation of pharmaceuticals based on their mode of action, providing a structured framework for understanding their ecological significance. Second, a chronological analysis of pharmaceutical research aims to document their prevalence and trends over time, shedding light on evolving environmental challenges. Third, the review critically analyses existing bioassay applications in wastewater, while also examining bioassay coverage of representative compounds within major pharmaceutical classes. Finally, it explores the potential for developing innovative bioassays tailored for water quality monitoring of pharmaceuticals, paving the way for more robust environmental monitoring and risk assessment. Overall, adopting effect-based methods for pharmaceutical monitoring in water holds significant promise. It encompasses a broad spectrum of biological impacts, promotes standardized protocols, and supports a bioassay test battery approach indicative of different endpoints, thereby enhancing the effectiveness of environmental risk assessment.


Assuntos
Bioensaio , Monitoramento Ambiental , Águas Residuárias , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Preparações Farmacêuticas/análise , Águas Residuárias/química , Medição de Risco/métodos , Animais , Qualidade da Água
3.
Environ Pollut ; 346: 123673, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423270

RESUMO

Airborne microplastics (AMPs) have been identified in both indoor and outdoor environments and account for a large portion of an individual's daily exposure to microplastics. Thus, it is crucial to find effective methods to capture and control the levels of AMPs and ultimately reduce human exposure. While terrestrial plants have been recognized for their effectiveness in capturing airborne particles, little is known about their ability to capture AMPs. This study investigated the ability of 8 natural plant species and 2 artificial plants to capture AMPs, as well as the influence of leaf morphology on this retention. Plant leaves were exposed to AMPs for two weeks, and deposited AMPs were characterized using a Micro-Fourier Transform Infrared (µ-FTIR)spectroscopy. Selected cleaned leaves were further digested, and the presence of subsurface AMPs was confirmed using µ-Raman spectroscopy. Results revealed that AMPs were retained on the leaves of all selected plant species at concentrations ranging from 0.02 to 0.87 n/cm2. The highest average concentration was observed on an artificial plant with fenestrated leaves, followed by natural plant species with trichomes and leaflets. The lowest concentration was observed on a natural plant with smooth leaves. The majority (90%) of retained AMPs were fibres, and the remaining were fragments. Polyethylene terephthalate (PET) was the prominent polymer type. Additionally, AMP fragments were observed in the leaf subsurface in one selected species, likely retained within the leaf cuticles. The results suggest that plant leaves can indiscriminately retain AMPs on their surfaces and act as temporary sinks for AMPs. Additionally, indoor plants may provide a useful functional role in reducing indoor AMP concentrations, although longer-term studies are needed to ascertain their retention capacity more accurately over time and to evaluate the capability of indoor plants to act as a suitable, cost-effective candidate for reducing AMPs.


Assuntos
Poluentes Atmosféricos , Microplásticos , Humanos , Microplásticos/análise , Poluentes Atmosféricos/análise , Plásticos/análise , Monitoramento Ambiental/métodos , Folhas de Planta/química
4.
J Environ Manage ; 353: 120203, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38325285

RESUMO

Biofiltration utilizes natural mechanisms including biodegradation and biotransformation along with other physical processes for the removal of organic micropollutants (OMPs) such as pharmaceuticals, personal care products, pesticides and industrial compounds found in (waste)water. In this systematic review, a total of 120 biofiltration studies from 25 countries were analyzed, considering various biofilter configurations, source water types, biofilter media and scales of operation. The study also provides a bibliometric analysis to identify the emerging research trends in the field. The results show that granular activated carbon (GAC) either alone or in combination with another biofiltration media can remove a broad range of OMPs efficiently. The impact of pre-oxidation on biofilter performance was investigated, revealing that pre-oxidation significantly improved OMP removal and reduced the empty bed contact time (EBCT) needed to achieve a consistently high OMP. Biofiltration with pre-oxidation had median removals ranging between 65% and >90% for various OMPs at 10-45 min EBCT with data variability drastically reducing beyond 20 min EBCT. Biofiltration without pre-oxidation had lower median removals with greater variability. The results demonstrate that pre-oxidation greatly enhances the removal of adsorptive and poorly biodegradable OMPs, while its impact on other OMPs varies. Only 19% of studies we reviewed included toxicity testing of treated effluent, and even fewer measured transformation products. Several studies have previously reported an increase in effluent toxicity because of oxidation, although it was successfully abated by subsequent biofiltration in most cases. Therefore, the efficacy of biofiltration treatment should be assessed by integrating toxicity testing into the assessment of overall removal.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Filtração/métodos , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Carvão Vegetal , Água
5.
Sci Total Environ ; 919: 170837, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350569

RESUMO

Microplastics (MPs) accumulating in freshwater sediment have raised concerns about potential risks to benthic dwelling organisms, yet few studies have examined the long-term impacts caused by MP exposure. This study investigated alterations to lipid profiles in an Australian freshwater invertebrate, Chironomus tepperi, induced by polyethylene MP fragments (1-45 µm) at environmentally relevant concentrations (125, 250, 500 and 1000 MPs/kg sediment), using a two-generational experimental design. In the parental generation, the relative abundance of triacylglycerols, total fatty acids and unsaturated fatty acids exhibited apparent hormetic patterns, with low-concentration stimulation and high-concentration inhibition observed. The overall trend in these lipid classes is consistent with previously observed changes to polar metabolite profiles, indicating that ingestion of MPs could inhibit nutrient assimilation from food leading to disruption of energy availability. In the first filial generation continuously exposed to MPs, however, abundance of cholesterol and total fatty acids increased with increasing exposure concentrations, suggesting different effects on energy metabolism between the parental generation and offspring. No differences in the lipidome were observed in first filial larvae that were not exposed, implying that MPs pose negligible carry-over effects. Overall, the combined results of this study together with a preceding metabolomics study provide evidence of a physical effect of MPs with subsequent impacts to bioenergetics. Nevertheless, future research is required to explore the potential long-term impacts caused by MPs, and to unravel the impacts of the surfactant control as a potential contributor to the observed hormetic response, particularly for studies exploring sub-lethal effects of MP exposure using sensitive omics techniques.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Polietileno/toxicidade , Chironomidae/fisiologia , Lipidômica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Austrália , Ácidos Graxos , Lipídeos/toxicidade
6.
Environ Sci Technol ; 58(9): 4060-4069, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331396

RESUMO

Microplastic pollution, an emerging pollution issue, has become a significant environmental concern globally due to its ubiquitous, persistent, complex, toxic, and ever-increasing nature. As a multifaceted and diverse suite of small plastic particles with different physicochemical properties and associated matters such as absorbed chemicals and microbes, future research on microplastics will need to comprehensively consider their multidimensional attributes. Here, we introduce a novel, conceptual framework of the "microplastome", defined as the entirety of various plastic particles (<5 mm), and their associated matters such as chemicals and microbes, found within a sample and its overall environmental and toxicological impacts. As a novel concept, this paper aims to emphasize and call for a collective quantification and characterization of microplastics and for a more holistic understanding regarding the differences, connections, and effects of microplastics in different biotic and abiotic ecosystem compartments. Deriving from this lens, we present our insights and prospective trajectories for characterization, risk assessment, and source apportionment of microplastics. We hope this new paradigm can guide and propel microplastic research toward a more holistic era and contribute to an informed strategy for combating this globally important environmental pollution issue.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Ecossistema , Estudos Prospectivos , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade
7.
Environ Sci Technol ; 58(4): 2027-2037, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235672

RESUMO

The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Qualidade da Água , Perfilação da Expressão Gênica , Bioensaio
8.
Water Res ; 250: 121071, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171181

RESUMO

Striving towards a circular economy, the application of treated sewage sludge (biosolids) to land is an opportunity to improve the condition of the soil and add essential nutrients, in turn reducing the need for fertilisers. However, there is an increasing concern about microplastic (MP) contamination of biosolids and their transport to terrestrial ecosystems. In Australia, agriculture is the largest biosolids end-user, however, there is limited understanding of MPs in Australian biosolids. Also, while the method to isolate MPs from biosolid is established, a need to extract and analyse MPs more efficiently is still pressing. In this study, we comprehensively quantified and characterised MPs in 146 biosolids samples collected from thirteen wastewater treatment plants (WWTPs) including different seasons. We have optimised an oxidative-enzymatic purification method to overcome current limitations for MP identification in complex samples and accurately report MPs in biosolids. This method enabled removal of >93 % of dry weight of organic material and greatly facilitated the MPs instrumental analysis. The concentration of MPs (>20 µm) in all biosolids samples ranged from 11 to 150 MPs/g dry weight. Abundance of MPs was affected by seasons with higher abundance of MPs usually found during cold and wet seasons. Despite seasonal variations, polyethylene terephthalate, polyurethane and polymethyl methacrylate were the most abundant polymers. Smaller MPs (20 to 200 µm) comprised >70 % of all detected MPs with a clear negative linear relationship observed between MP size and abundance. Per capita concentration of MPs in biosolids across all studied WWTPs was 0.7 to 21 g MPs per person per year. Therefore, biosolids are an important sink and source of MPs to agroecosystems, emphasising the need to more comprehensively understand the fate, impact and risks associated with MPs on agricultural soils.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Biossólidos , Estações do Ano , Ecossistema , Austrália , Esgotos/análise , Solo , Poluentes Químicos da Água/análise , Monitoramento Ambiental
9.
J Environ Manage ; 351: 119692, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039589

RESUMO

Chemical contaminants, such as pesticides, pharmaceuticals and industrial compounds are ubiquitous in surface water and sediment in areas subject to human activity. While targeted chemical analysis is typically used for water and sediment quality monitoring, there is growing interest in applying effect-based methods with in vitro bioassays to capture the effects of all active contaminants in a sample. The current study evaluated the biological effects in surface water and sediment from two contrasting catchments in Aotearoa New Zealand, the highly urbanised Whau River catchment in Tamaki Makaurau (Auckland) and the urban and mixed agricultural Koreti (New River) Estuary catchment. Two complementary passive sampling devices, Chemcatcher for polar chemicals and polyethylene (PED) for non-polar chemicals, were applied to capture a wide range of contaminants in water, while composite sediment samples were collected at each sampling site. Bioassays indicative of induction of xenobiotic metabolism, receptor-mediated effects, genotoxicity, cytotoxicity and apical effects were applied to the water and sediment extracts. Most sediment extracts induced moderate to strong estrogenic and aryl hydrocarbon (AhR) activity, along with moderate toxicity to bacteria. The water extracts showed similar patterns to the sediment extracts, but with lower activity. Generally, the polar Chemcatcher extracts showed greater estrogenic activity, photosynthesis inhibition and algal growth inhibition than the non-polar PED extracts, though the PED extracts showed greater AhR activity. The observed effects in the water extracts were compared to available ecological effect-based trigger values (EBT) to evaluate the potential risk. For the polar extracts, most sites in both catchments exceeded the EBT for estrogenicity, with many sites exceeding the EBTs for AhR activity and photosynthesis inhibition. Of the wide range of endpoints considered, estrogenic activity, AhR activity and herbicidal activity appear to be the primary risk drivers in both the Whau and Koreti Estuary catchments.


Assuntos
Rios , Poluentes Químicos da Água , Humanos , Rios/química , Água/análise , Poluentes Químicos da Água/análise , Agricultura , Bioensaio , Polietileno , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química
10.
Chemosphere ; 350: 140978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135125

RESUMO

In this study, the performance of standalone ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs), namely, UV/hydrogen peroxide, UV/chlorine, UV/persulphate, and UV/permonosulphate, were investigated for the degradation of 31 trace organic contaminants (TrOCs). Under the tested conditions, standalone UV photolysis did not achieve effective removal of TrOCs. To improve the degradation efficiency of UV photolysis, four different oxidants were added individually to the test solution. The effect of these oxidants in the absence of UV irradiation was also explored and only chlorine showed promising degradation of some contaminants. During the chlorination of 31 investigated TrOCs, only six demonstrated greater than 50% degradation. The combined UV-based AOPs demonstrated much improved degradation (ranging from 65 to 100%) depending on TrOC-structure and oxidant concentration. The UV/hydrogen peroxide process showed similar degradation of TrOCs, irrespective of the functional groups (i.e., electron withdrawing groups, EWGs and electron donating groups, EDGs) present in their structures. Conversely, the UV/sulphate and UV/chlorine based processes achieved better degradation of the TrOCs with EDGs in their structures. TrOCs degradation improved up to 40% when oxidants concentrations were increased from 0.1 to 1 mM, and further increasing the concentration to 2 mM did not improve degradation. Toxicity evaluation using bioluminescence test (BLT assay) demonstrated that except for UV/hydrogen peroxide, all UV-based AOPs increased the toxicity of the treated effluent, indicating generation of toxic by-products. This study elucidates the performance of four different UV-based AOPs for the removal of commonly detected diverse TrOCs for the first time.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio/química , Cloro , Poluentes Químicos da Água/análise , Oxidantes , Oxirredução , Fotólise , Raios Ultravioleta
11.
Chemosphere ; 349: 140957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128742

RESUMO

Microplastics and microfibres are found ubiquitously in global oceans as well as marine organisms from different trophic levels. However, little is known about the presence of microplastics and microfibres in marine megafauna, such as sharks. This study provided the first investigation of the presence of microplastics and other anthropogenic fibres (i.e., cellulose based fibres) in intestine and muscle samples of four large apex shark species in Australian coastal waters. Microplastics and other anthropogenic fibres were found in 82% of the analysed intestine samples. The mean abundance in intestine samples was 3.1 ± 2.6 particles/individual, which corresponded to 0.03 ± 0.02 particles/g of intestine, across all shark species. The size of particles ranged from 190 to 4860 µm in length with 92% being fibrous in shape and the rest fragments. FTIR spectroscopy identified that 70% of fibres were cellulose-based followed by polyethylene terephthalate (PET), while the fragments were polyethylene and polypropylene. In shark muscles, 60% of samples contained microplastics and other anthropogenic fibres, again with the majority being cellulose-based fibres followed by PET fibres. Methodological differences hinder a more comprehensive assessment of microplastic contamination across studies. Additionally, we identified some challenges which should be factored in for future studies looking at the presence of microplastics as well as other anthropogenic fibres in these large marine organisms. Overall, the findings provide first evidence of microplastics and other anthropogenic fibres not only in the intestines, but also in muscle tissues of large apex shark species.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Austrália , Celulose , Polietilenotereftalatos
12.
Mar Pollut Bull ; 196: 115605, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844482

RESUMO

Queensland loggerhead turtle nest numbers at Mon Repos (MR) indicate population recovery that doesn't occur at Wreck Island (WI). Previous research illustrated that MR and WI turtles forage in different locations, potentially indicating risks differences. Blood, scute, and egg were collected from turtles nesting at MR and WI, with known foraging sites (from concurrent studies). Trace element and organic contaminants were assessed via acid digestion and in vitro cytotoxicity bioassays, respectively. WI turtles had significantly higher scute uranium and blood molybdenum compared to MR turtles, and arsenic was higher in WI turtles foraging north and MR turtles foraging south. Egg and blood titanium, manganese, cadmium, barium, lead, and molybdenum, and scute and egg selenium and mercury significantly correlated. Blood (75 %) extracts produced significant toxicity in vitro in turtle fibroblast cells. In conclusion, reducing chemical exposure at higher risk foraging sites would likely benefit sea turtles and their offspring.


Assuntos
Selênio , Oligoelementos , Tartarugas , Animais , Molibdênio , Queensland , Comportamento de Nidação
13.
J Water Health ; 21(9): 1357-1368, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37756201

RESUMO

The widespread presence of contaminants of emerging concern (CEC) in surface waters, treated wastewater and drinking water is an ongoing issue for the water industry. The absence of regulatory guidance and limited occurrence, toxicity and removal data are defining criteria of CEC and make it difficult to prioritise which CEC pose the greatest risk. The online Emerging CHemIcals Database for National Awareness (ECHIDNA) aims to classify and prioritise CEC based on their potential risk, with the information presented in an easily accessible and intuitive manner. A candidate list of almost 1,800 potential CEC, including pesticides, pharmaceuticals and industrial compounds, was compiled using both Australian and international resources. These were ranked based on in silico assessment of their persistent, bioaccumulative and toxic (PBT) properties, as well as potential chronic toxicity hazard, yielding 247 CEC for further prioritisation. Risk Quotients (RQ) identified between 5 and 87 CEC posing a risk to human and ecosystem health, respectively, across drinking water, surface water, treated wastewater and raw wastewater. While the ability of the water industry to effectively prioritise CEC is limited by candidate identification and data availability, ECHIDNA can provide valuable information for better decision-making surrounding CEC management.


Assuntos
Água Potável , Tachyglossidae , Humanos , Animais , Ecossistema , Águas Residuárias/toxicidade , Austrália
14.
J Hazard Mater ; 459: 132097, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541122

RESUMO

The accumulation of microplastics (MPs) in sediments could pose risks to benthic organisms and their progeny. Here, we examined effects on traditional apical endpoints along with changes to whole body metabolite profiles induced by irregular shaped polyethylene MPs (1-45 µm) at environmentally relevant concentrations (125, 250, 500 and 1000 MPs/kg sediment) in Chironomus tepperi using a two-generation exposure regime. Survival and emergence of C. tepperi were negatively affected in the parental generation at the two highest concentrations, whereas endpoints associated with growth were only impacted at 1000 MPs/kg sediment. Metabolites associated with several amino acid and energy metabolism pathways were present at lower abundances at the highest exposure concentration suggesting an overall impact on bioenergetics which relates to the inhibition of food acquisition or nutrient assimilation caused by ingestion of MPs, rather than a traditional receptor-mediated toxicity response. In contrast, no significant effects on apical endpoints were observed in the continuous exposure of first filial generation, and lactic acid was the only metabolite that differed significantly between groups. Larvae in unexposed conditions showed no differences in survival or metabolite profiles suggesting that effects in the parental generation do not carry over to the next filial generation. The findings provide evidence on the underlying impacts of MP ingestion and potential adaption to MP exposure of C. tepperi.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Polietileno/toxicidade , Plásticos/toxicidade , Invertebrados , Água Doce , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 57(34): 12829-12837, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578171

RESUMO

Stormwater has been identified as a pathway for microplastics (MPs), including tire wear particles (TWPs), into aquatic habitats. Our knowledge of the abundance of MPs in urban stormwater and potential strategies to control MPs in stormwater is still limited. In this study, stormwater samples were collected from microlitter capture devices (inlet and outlet) during rain events. Sediment samples were collected from the material captured in the device and from the inlet and outlet of a constructed stormwater wetland. MP (>25 µm) concentration in stormwater varied across different locations ranging from 3.8 to 59 MPs/L in raw and 1.8 to 32 MPs/L in treated stormwater, demonstrating a decrease after passage through the device (35-88% removal). TWPs comprised ∼95% of all particles, followed by polypropylene (PP) and poly(ethylene terephthalate) (PET). The concentration of TWPs ranged from 2.5 to 58 TWPs/L and 1450 to 4740 TWPs/kg in stormwater and sediment, respectively. A higher abundance of MPs was found in the sediment at the inlet of the constructed wetland compared to the outlet, indicating a potential role of wetlands in removing MPs from stormwater. These findings suggest that both constructed wetlands and microlitter capture devices can mitigate the transport of MPs from stormwater to the receiving waterways.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Áreas Alagadas , Ecossistema , Polipropilenos , Monitoramento Ambiental , Poluentes Químicos da Água/análise
16.
J Proteomics ; 285: 104942, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285907

RESUMO

Understanding the impacts of chemical exposure in marine wildlife is challenging, due to practical and ethical constraints that preclude traditional toxicology research on these animals. This study addressed some of these limitations by presenting an ethical and high throughput cell-based approach to elucidate molecular-level effects of contaminants on sea turtles. The experimental design addressed basic questions of cell-based toxicology, including chemical dose and exposure time. Primary green turtle skin cells were exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA) for 24 and 48 h, at three sub-lethal, environmentally relevant concentrations (1, 10 and 100 µg/L). Sequential window acquisition of all theoretical mass spectra (SWATH-MS) identified over 1000 differentially abundant proteins within the 1% false discovery rate (FDR) threshold. The 24 h exposure resulted in a greater number of differentially abundant proteins, compared to 48 h exposure, for both contaminants. However, there were no statistically significant dose-response relationships for the number of differentially synthesised proteins, nor differences in the proportion of increased vs decreased proteins between or within exposure times. Known in vivo markers of contaminant exposure, superoxide dismutase and glutathione S-transferase, were differentially abundant following exposure to PCB153 and PFNA. SIGNIFICANCE: Cell-based (in vitro) proteomics provides an ethical and high throughput approach to understanding the impacts of chemical contamination on sea turtles. Through investigating effects of chemical dose and exposure duration on unique protein abundance in vitro, this study provides an optimised framework for conducting cell-based studies in wildlife proteomics, and highlights that proteins detected in vitro could act as biomarkers of chemical exposure and effect in vivo.


Assuntos
Bifenilos Policlorados , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/metabolismo , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Animais Selvagens , Pele/química
17.
Environ Sci Technol ; 57(24): 8975-8982, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37272882

RESUMO

Cetaceans are at elevated risk of accumulating persistent and lipophilic environmental contaminants due to their longevity and high proportion of body fat. Despite this, there is a paucity of taxa-specific chemical effect data, in part due to the ethical and logistical constraints in working with highly mobile aquatic species. Advances in cetacean cell culture have opened the door to the application of mainstream in vitro toxicological effect assessment approaches. Image-based cell profiling is a high-throughput, microscopy-based system commonly applied in drug development. It permits the analysis of the xenobiotic effect on multiple cell organelles simultaneously, hereby flagging its potential utility in the evaluation of chemical toxicodynamics. Here we exposed immortalized humpback whale skin fibroblasts (HuWaTERT) to six priority environmental contaminants known to accumulate in the Southern Ocean food web, in order to explore their subcellular organelle responses. Results revealed chemical-dependent modulation of mitochondrial texture, with the lowest observed effect concentrations for chlorpyrifos, dieldrin, trifluralin, and p,p'-dichlorodiphenyldichloroethane of 0.3, 4.1, 9.3, and 19.8 nM, respectively. By contrast, no significant changes were observed upon exposure to endosulfan and lindane. This study contributes the first fixed mitochondrial images of HuWaTERT and constitutes novel, taxa-specific chemical effect data in support of evidence-based conservation policy and management.


Assuntos
Jubarte , Hidrocarbonetos Clorados , Praguicidas , Animais , Jubarte/fisiologia , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/metabolismo , Praguicidas/análise , Mitocôndrias/química , Fibroblastos/química , Fibroblastos/metabolismo
18.
Sci Total Environ ; 889: 164292, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211105

RESUMO

Studies on airborne microplastics (AMPs) have reported higher abundance of AMPs in indoor air compared to outdoors. Most people spend more time indoors compared to outdoors, and it is therefore important to identify and quantify AMPs in indoor air to understand human exposure to AMPs. This exposure can vary among different individuals as they spend their time in different locations and different activity levels, and thus experience different breathing rates. In this study, AMPs ranging from 20-5000 µm were sampled across different indoor sites of Southeast Queensland using an active sampling technique. The highest indoor MP concentration was observed at a childcare site (2.25 ± 0.38 particles/m3), followed by an office (1.20 ± 0.14 particles/m3) and a school (1.03 ± 0.40 particles/m3). The lowest indoor MP concentration was observed inside a vehicle (0.20 ± 0.14 particles/m3), comparable to outdoor concentrations. The only shapes observed were fibers (98%) and fragments. MP fibers ranged from 71 to 4950 µm in length. Polyethylene terephthalate was the prominent polymer type at most sites. Using our measured airborne concentrations as inhaled air concentrations, we calculated the annual human exposure levels to AMPs using scenario-specific activity levels. Males between the ages of 18 to 64 were calculated to have the highest AMP exposure at 3187 ± 594 particles/year, followed by males ≥65 years at 2978 ± 628 particles/year. The lowest exposure of 1928 ± 549 particles/year was calculated for females between the ages of 5 to 17. This study provides the first report on AMPs for various types of indoor locations where individuals spend most of their time. Considering acute, chronic, industrial, and individual susceptibility, more detailed human inhalation exposure levels to AMPs should be estimated for a realistic appraisal of the human health risk, including how much of the inhaled particles are exhaled. SYNOPSIS: Limited research exists on the occurrence and the associated human exposure levels to AMPs in indoor locations where people spend most of their time. This study reports on the occurrence of AMPs at indoor locations and associated exposure levels using scenario-specific activity levels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Pré-Escolar , Criança , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Microplásticos , Plásticos/análise , Austrália , Monitoramento Ambiental/métodos
19.
Environ Sci Technol ; 57(15): 6023-6032, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37026997

RESUMO

Effect-based methods (EBM) have great potential for water quality monitoring as they can detect the mixture effects of all active known and unknown chemicals in a sample, which cannot be addressed by chemical analysis alone. To date, EBM have primarily been applied in a research context, with a lower level of uptake by the water sector and regulators. This is partly due to concerns regarding the reliability and interpretation of EBM. Using evidence from the peer-reviewed literature, this work aims to answer frequently asked questions about EBM. The questions were identified through consultation with the water industry and regulators and cover topics related to the basis for using EBM, practical considerations regarding reliability, sampling for EBM and quality control, and what to do with the information provided by EBM. The information provided in this work aims to give confidence to regulators and the water sector to stimulate the application of EBM for water quality monitoring.


Assuntos
Pessoal Administrativo , Política Ambiental , Qualidade da Água , Humanos , Reprodutibilidade dos Testes , Monitoramento Ambiental
20.
Environ Pollut ; 319: 120984, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587782

RESUMO

Microplastics come in a variety of shapes, polymer types and sizes. Due to the lack of a harmonised approach to analyse and quantify microplastics, there are huge disparities in size detection limits and size classifications used in the literature. This has caused large variations in reported microplastic data and has made comparing microplastic abundance between studies extremely challenging. Herein, we applied a simple mathematical approach that allows for a meaningful comparison between size and abundance (number of particles) of microplastics irrespective of the size classifications used. This method was validated using two separate datasets (microplastics in air and sediment) and applied to re-analyse 127 publications reporting microplastics in various environmental matrices. We demonstrate a strong negative linear relationship between microplastic concentrations and their sizes with comparable slopes across all matrices. Using this method, it is possible to compare the concentration of microplastics of various sizes between studies. It also allows estimation of the abundance of microplastics of a specific size where data are not available. This enables researchers to predict environmentally relevant concentrations of microplastics (particularly for smaller microplastics) and provide realistic exposure scenarios in future toxicity studies, which will greatly improve our understanding of the risks that microplastics pose to living organisms.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA