Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(26): e202203842, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36786542

RESUMO

A N-hydroxy succinimide (NHS) ester substituted bis(acyl)phosphane oxide (ACTIVE-BAPO) was prepared by phospha-Michael addition and used for an easy one-step BAPO ligation with substrates containing primary amino groups, such as amino acids, proteins, and poly(amidoamine) (PAMAM) dendrimers. Thereby, a range of new molecular and polymeric photoinitators was obtained. Real-time photo-rheology experiments demonstrated the outstanding efficiency of the PAMAM BAPOs as photoinitiators for free radical polymerization. Remarkably, it is found that PAMAM BAPOs also act as crosslinking agents to convert monofunctional methacrylate monomers into thermosetting networks without any further additives. Depending on the number of the attached BAPOs, thermosets with a different degree of crosslinking and swelling capability in water were obtained.

2.
Plants (Basel) ; 11(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161307

RESUMO

Tapirira guianensis (Anacardiaceae) is a natural resource from the Amazonian Forest and is locally known in French Guiana as "loussé" (creole), "tata pilili" (wayãpi), or "ara" (palikur). The tree is used by indigenous populations for medicinal purposes. To increase the potential of this tree for cosmetic, agro-food, or pharmaceutical uses, extracts were obtained through ultrasound-assisted extraction (UAE) from T. guianensis leaves using various extraction solvents such as water, methanol, and methanol-water (85/15; v/v). Chemical (DPPH, TEAC, ORAC) tests were applied to assess the anti-radical potential of these extracts. The polyphenol contents were determined by spectrophotometric (UV/Visible) and by means of chromatographic (UPLC-DAD-ESI-IT-MSn) methods. Tapirira guianensis leaf hydromethanolic extract produced the highest polyphenol content and exhibited antiradical activities in chemical assays (DPPH, TEAC, and ORAC) similar to (or higher than) those of a well-known antiradical plant, green tea. In T. guianensis, two classes of polyphenols were evidenced: (1) galloylquinic acids (identified for the first time in the studied species) and (2) flavonols and flavanols (present in small amounts). Flavonols seemed to play a major role in the antioxidant activity of DPPH. These findings provide a rationale for the use of T. guianensis in traditional medicine and to pave the way for seeking new biological properties involving this Amazonian tree.

3.
Chemistry ; 26(47): 10795-10800, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32428377

RESUMO

Reactive species, such as . PO2 and HOPO, are considered of upmost importance in flame inhibition and catalytic combustion processes of fuels. However, the underlying chemistry of their formation remains speculative due to the unavailability of suitable analytical techniques that can be used to identify the transient species which lead to their formation. This study elucidates the reaction mechanisms of the formation of phosphoryl species from dimethyl methyl phosphonate (DMMP) and dimethyl methyl phosphoramidate (DMPR) under well-defined oxidative conditions. Photoelectron photoion coincidence techniques that utilized vacuum ultraviolet synchrotron radiation were applied to isomer-selectively detect the elusive key intermediates and stable products. With the help of in situ recorded spectral fingerprints, different transient species, such as PO2 and triplet O radicals, have been exclusively identified from their isomeric components, which has helped to piece together the formation mechanisms of phosphoryl species under various conditions. It was found that . PO2 formation required oxidative conditions above 1070 K. The combined presence of O2 and H2 led to significant changes in the decomposition chemistry of both model phosphorus compounds, leading to the formation of . PO2 . The reaction . PO+O2 →. PO2 +O: was identified as the key step in the formation of . PO2 . Interestingly, the presence of O2 in DMPR thermolysis suppresses the formation of PN-containing species. In a previous study, PN species were identified as the major species formed during the pyrolysis of DMPR. Thus, the findings of this study has shed light onto the decomposition pathways of organophosphorus compounds, which are beneficial for their fuel additive and fire suppressant applications.

4.
Chem Commun (Camb) ; 56(35): 4828-4831, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32236208

RESUMO

A new multi-photoactive γ-cyclodextrin substituted bis(acyl)phosphane oxide derivative (BAPO-γ-CyD) was successfully prepared via a convergent synthesis using a phospha-Michael-addition, as confirmed by 1H-, 13C-, 31P-NMR and IR spectroscopy and mass spectrometry. Kinetic studies carried out by photo-DSC and photo-rheology demonstrated its outstanding efficiency as a photoinitiator for free-radical polymerization. Remarkably, it is found that BAPO-γ-CyD also acts as a crosslinking agent to convert monofunctional methacrylate monomers into self-standing thermosetting networks with extensive swelling capability in water.

5.
J Chem Inf Model ; 60(4): 2115-2125, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105472

RESUMO

The aim of this work is to describe the molecular inclusion of chlordecone with α-, ß-, and γ-cyclodextrin in aqueous solution using quantum mechanics. The guest-host complexes of chlordecone and cyclodextrins are modeled in aqueous solution using the multiple minima hypersurface methodology with a PM6-D3H4X semiempirical Hamiltonian, and the lowest energy minima obtained are reoptimized using the M06-2X density functional and the intermolecular interactions described using quantum theory of atoms in molecules (QTAIM). The studied complexes are classified according to the degree of inclusion, namely, total occlusion, partial occlusion, and external interaction. More stable complexes are obtained when γ-CD is used as the host molecule. The interactions characterized through QTAIM analysis are all of electrostatic nature, predominantly of dispersive type. In this work, a method based on the counterpoise correction is also discussed to mitigate the basis set superposition error in density functional theory calculations when using an implicit solvation model.


Assuntos
Clordecona , Ciclodextrinas , Teoria Quântica , Eletricidade Estática , Água
6.
RSC Adv ; 9(47): 27484-27499, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35529240

RESUMO

The present work aimed to study the guest-host complexes of ß-hexachlorocyclohexane (ß-HCH), a pesticide with high environmental stability that can cause severe health problems, with the most common cyclodextrins (α-, ß-, and γ-CDs). The formation reactions of these molecular inclusion complexes were addressed in this research. The multiple minima hypersurface methodology, quantum calculations based on density functional theory and a topological exploration of the electron density based on the quantum theory of atoms in molecules approach were used to characterize the interaction spaces of the pollutant with the three CDs. Additionally, charge distribution, charge transfer and dual descriptor analyses were employed to elucidate the driving forces involved in the formation of these molecular inclusion complexes. Three types of fundamental interactions were observed: total occlusion, partial occlusion and external interaction (non-occlusion). Finally, experiments were performed to confirm the formation of the studied complexes. The most stable complexes were obtained when γ-CD was the host molecule. The interactions between the pesticide and CDs have fundamentally dispersive natures, as was confirmed experimentally by spectroscopic results. All the obtained results suggest the possibility of using CDs for the purification and treatment of water polluted with ß-HCH.

7.
J Mol Model ; 23(11): 318, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29058088

RESUMO

A molecular modeling study of symmetrical conformers of α-, ß-, and γ-cyclodextrins in the gas and aqueous phases was carried out using the M06-2X density functional method, with SMD employed as an implicit solvation model. Eight symmetrical conformers were found for each cyclodextrin. Values of geometrical parameters obtained from the modeling study were found to agree well with those obtained from X-ray diffraction structures. A vibrational analysis using harmonic frequencies was performed to determine thermodynamic quantities. The GIAO method was applied to determine proton and carbon-13 NMR chemical shifts, which were then compared with corresponding chemical shifts reported in the literature. Hydrogen-bonding patterns were analyzed using geometrical descriptors, and quantum chemical topology was explored by QTAIM analysis. The results of this study indicated that four of the eight conformers studied for each cyclodextrin are the most populated in aqueous solution. These results provide the foundations for future studies of host-guest complexes involving these cyclodextrins. Graphical abstract δΔGsolvation: variation of free Gibss energy of solvation.

8.
Chemistry ; 23(23): 5595-5601, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28378378

RESUMO

The thermal behavior of organophosphorus compounds is intricate and poorly understood but crucial for understanding gas-phase flame inhibition, syntheses of thermally active phosphorus-based reactive precursors, catalytic combustion, incineration of toxic nerve gases, and astrochemistry. In this work, the pyrolysis of dimethyl phosphoramidate was investigated using photoion photoelectron coincidence spectroscopy in combination with vacuum ultraviolet synchrotron radiation. This technique enables isomer-selective detection of reactive intermediates, which are crucial in the understanding of the decomposition process. Combined with quantum chemical calculations, the experimental results permit the formulation of a comprehensive pyrolysis reaction pathway for dimethyl phosphoramidate, consisting of several reactive phosphorus species on four possible decomposition pathways. Compared to the decomposition of dimethyl methyl phosphonate, which leads exclusively to the formation of PO radicals, substitution of the methyl with an amino group most notably yields phosphorus nitride (P≡N). This mostly favored reaction pathway involves the subsequent loss of methanol and formaldehyde to yield three PONH2 tautomers, which eliminate water to generate P≡N. The thermally induced production of PN species and its possible role in flame inhibition has not previously been reported. In addition, the adiabatic ionization energy of O=P(OCH3 )2 NH2 was determined to be 9.79±0.02 eV.

9.
Chem Commun (Camb) ; 52(13): 2823-6, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26779582

RESUMO

A new synthesis of bis(acyl)phosphane oxide (BAPO) photoinitiators was developed which can be used to functionalize cellulose nanocrystal surfaces for polymer grafting. Hybrid materials with excellent graft yields can be rapidly obtained under mild and acid-free conditions.


Assuntos
Celulose/química , Nanopartículas , Fosfinas/síntese química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
10.
Chemistry ; 21(3): 1073-80, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25413700

RESUMO

The production of phosphoryl species (PO, PO2, HOPO) is believed to be of great importance for efficient flame-retardant action in the gas phase. We present a detailed investigation of the thermal decomposition of dimethyl methylphosphonate (DMMP) probed by vacuum ultraviolet (VUV) synchrotron radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. This technique provides a snapshot of the thermolysis process and direct evidence of how the reactive phosphoryl species are generated during heat exposure. One of the key findings of this work is that only PO is formed in high concentration upon DMMP decomposition, whereas PO2 is absent. It can be concluded that the formation of PO2 needs an oxidative environment, which is typically the case in a real flame. Based on the identification of products such as methanol, formaldehyde, and PO, as well as the intermediates O=P-CH3, H2C=P-OH, and H2C=P(=O)H, supported by quantum chemical calculations, we were able to describe the predominant pathways that lead to active phosphoryl species during the thermal decomposition of DMMP.

11.
ACS Appl Mater Interfaces ; 6(21): 18418-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25362895

RESUMO

An innovative atmospheric pressure chemical vapor deposition method toward the deposition of polymeric layers has been developed. This latter involves the use of a nanopulsed plasma discharge to initiate the free-radical polymerization of an allyl monomer containing phosphorus (diethylallylphosphate, DEAP) at atmospheric pressure. The polymeric structure of the film is evidence by mass spectrometry. The method, highly suitable for the treatment of natural biopolymer substrate, has been carried out on cotton textile to perform the deposition of an efficient and conformal protective coating.


Assuntos
Celulose/química , Polímeros/química , Indústria Têxtil/métodos , Pressão Atmosférica , Fibra de Algodão , Temperatura Alta , Fosfatos , Gases em Plasma , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA