Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Annu Rev Phytopathol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684078

RESUMO

The disease triangle is a structurally simple but conceptually rich model that is used in plant pathology and other fields of study to explain infectious disease as an outcome of the three-way relationship between a host, a pathogen, and their environment. It also serves as a guide for finding solutions to treat, predict, and prevent such diseases. With the omics-driven, evidence-based realization that the abundance and activity of a pathogen are impacted by proximity to and interaction with a diverse multitude of other microorganisms colonizing the same host, the disease triangle evolved into a tetrahedron shape, which features an added fourth dimension representing the host-associated microbiota. Another variant of the disease triangle emerged from the recently formulated pathobiome paradigm, which deviates from the classical "one pathogen" etiology of infectious disease in favor of a scenario in which disease represents a conditional outcome of complex interactions between and among a host, its microbiota (including microbes with pathogenic potential), and the environment. The result is a version of the original disease triangle where "pathogen" is substituted with "microbiota." Here, as part of a careful and concise review of the origin, history, and usage of the disease triangle, I propose a next step in its evolution, which is to replace the word "disease" in the center of the host-microbiota-environment triad with the word "health." This triangle highlights health as a desirable outcome (rather than disease as an unwanted state) and as an emergent property of host-microbiota-environment interactions. Applied to the discipline of plant pathology, the health triangle offers an expanded range of targets and approaches for the diagnosis, prediction, restoration, and maintenance of plant health outcomes. Its applications are not restricted to infectious diseases only, and its underlying framework is more inclusive of all microbial contributions to plant well-being, including those by mycorrhizal fungi and nitrogen-fixing bacteria, for which there never was a proper place in the plant disease triangle. The plant health triangle also may have an edge as an education and communication tool to convey and stress the importance of healthy plants and their associated microbiota to a broader public and stakeholdership.

2.
Appl Microbiol Biotechnol ; 108(1): 211, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358509

RESUMO

The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.


Assuntos
Agricultura , Ecossistema , Animais , Humanos , Ração Animal , Antibacterianos , Biodiversidade
3.
Methods Mol Biol ; 2605: 65-78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520389

RESUMO

Seed fungi are potentially important for their roles in seedling microbiome assembly and seedling health, but surveys of full seed fungal communities remain limited. While culture-dependent methods have been used to characterize some members of the seed mycobiota, recent culture-independent studies have improved the ease in identifying and characterizing full seed fungal communities. In this chapter, we describe how to survey seed fungi using both traditional culture-based methods and culture-free metabarcoding. We first describe protocols for the isolation and long-term preservation of fungal strains from individual seeds and for the extraction and amplification of DNA from such fungal isolates for identification with Sanger sequencing. We also detail how to extract, amplify, and sequence fungal DNA directly from individual seeds. Finally, we provide suggestions for troubleshooting media choices, PCR inhibition by isolates and plant tissue, and PCR limitation by low fungal DNA.


Assuntos
Micobioma , DNA Fúngico/genética , Fungos , Sementes/genética , Sementes/microbiologia , Plântula/genética
4.
Front Microbiol ; 13: 877519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935241

RESUMO

Microorganisms have the potential to affect plant seed germination and seedling fitness, ultimately impacting plant health and community dynamics. Because seed-associated microbiota are highly variable across individual plants, plant species, and environments, it is challenging to identify the dominant processes that underlie the assembly, composition, and influence of these communities. We propose here that metacommunity ecology provides a conceptually useful framework for studying the microbiota of developing seeds, by the application of metacommunity principles of filtering, species interactions, and dispersal at multiple scales. Many studies in seed microbial ecology already describe individual assembly processes in a pattern-based manner, such as correlating seed microbiome composition with genotype or tracking diversity metrics across treatments in dispersal limitation experiments. But we see a lot of opportunities to examine understudied aspects of seed microbiology, including trait-based research on mechanisms of filtering and dispersal at the micro-scale, the use of pollination exclusion experiments in macro-scale seed studies, and an in-depth evaluation of how these processes interact via priority effect experiments and joint species distribution modeling.

5.
FEMS Microbiol Ecol ; 98(11)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36040340

RESUMO

Collimonads are well-adapted to nutrient-poor environments. They are known to hydrolyse chitin, produce antifungal metabolites, weather minerals, and are effective biocontrol agents protecting plants from fungal diseases. The production of N-acyl homoserine lactones (AHLs) was suggested to be a conserved trait of collimonads, but little is known about the genes that underlie this production or the genes that are controlled by AHLs. To improve our understanding of the role of AHLs in the ecology of collimonads, we carried out transcriptomic analyses, combined with chemical and functional assays, on strain Collimonas pratensis PMB3(1). The main AHLs produced by this strain were identified as 3-hydroxy-hexa- and octa-noyl-homoserine lactone. Genome analysis permitted to identify putative genes coding for the autoinducer synthase (colI) and cognate transcriptional regulator (colR). The ability to produce AHLs was lost in ΔcolI and ΔcolR mutants. Functional assays revealed that the two mutants metabolized glucose, formate, oxalate, and leucine better than the wild-type (WT) strain. Transcriptome sequencing analyses revealed an up-regulation of different metabolic pathways and of motility in the QS-mutants compared to the WT strain. Overall, our results provide insights into the role of the AHL-dependent regulation system of Collimonas in environment colonization, metabolism readjustment, and microbial interactions.


Assuntos
Percepção de Quorum , Transcriptoma , Percepção de Quorum/genética , Regulon , Acil-Butirolactonas , Genômica
6.
mSystems ; 7(1): e0103321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35014875

RESUMO

A key challenge in microbiome science is the scale mismatch problem, which arises when the scale at which microbial communities are sampled, interrogated, and averaged is different from the scale at which individual microorganisms within those communities interact with each other and with their environment. Profiling the microbial communities in a teaspoon of soil, from a scoop of fecal matter, or along a plant leaf surface represents a scale mismatch of multiple orders of magnitude, which may limit our ability to interpret or predict species interactions and community assembly within such samples. In this Perspective, we explore how economists, who are historically and topically split along the lines of micro- and macroeconomics, deal with the scale mismatch problem, and how taking clues from (micro)economists could benefit the field of microbiomics.


Assuntos
Microbiota , Folhas de Planta
7.
Bioprocess Biosyst Eng ; 44(11): 2289-2301, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34184107

RESUMO

This study investigates methods to commercialize safer alternatives to chemical pesticides that pose risks to human safety and the environment. Spray-drying encapsulation of the plant-protective, antifungal bacterium Collimonas arenae Cal35 in in situ cross-linked alginate microcapsules (CLAMs) was optimized to minimize losses during spray-drying and maximize yield of spray-dried powder. Only inlet temperature significantly affected survival during spray-drying, while inlet temperature, spray rate, and alginate concentration significantly affected yield of spray-dried powder. Lowering inlet temperature to 95 °C provided the greatest survival during spray-drying, while increasing inlet temperature and lowering spray rate and alginate concentration produced the highest yield. Without the CLAMs formulation, Cal35 did not survive spray-drying. When Cal35 was encapsulated in CLAMs in the presence of modified starch, shelf survival was extended to 3 weeks in a low oxygen, low humidity storage environment. Cal35 retained its antifungal activity throughout spray-drying and shelf storage, supporting its potential use as a formulated biofungicide product.


Assuntos
Bactérias Gram-Negativas/fisiologia , Plantas/microbiologia , Secagem por Atomização , Alginatos/química , Cápsulas , Temperatura
8.
Microb Biotechnol ; 14(4): 1550-1565, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955675

RESUMO

Bacillus cereus is a common food-borne pathogen that is responsible for important outbreaks of food poisoning in humans. Diseases caused by B. cereus usually exhibit two major symptoms, emetic or diarrheic, depending on the toxins produced. It is assumed that after the ingestion of contaminated vegetables or processed food, spores of enterotoxigenic B. cereus reach the intestine, where they germinate and produce the enterotoxins that are responsible for food poisoning. In our study, we observed that sporulation is required for the survival of B. cereus in leaves but is dispensable in ready-to-eat vegetables, such as endives. We demonstrate that vegetative cells of B. cereus that are originally impaired in sporulation but not biofilm formation are able to reach the intestine and cause severe disorders in a murine model. Furthermore, our findings emphasise that the number of food poisoning cases associated with B. cereus is underestimated and suggest the need to revise the detection protocols, which are based primarily on spores and toxins.


Assuntos
Bacillus cereus , Doenças Transmitidas por Alimentos , Animais , Bacillus cereus/genética , Enterotoxinas , Microbiologia de Alimentos , Humanos , Estágios do Ciclo de Vida , Camundongos , Verduras
9.
Appl Environ Microbiol ; 87(12): e0023321, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811027

RESUMO

The bacterial strain Collimonas fungivorans Ter331 (CfTer331) inhibits mycelial growth and spore germination in Aspergillus niger N402 (AnN402). The mechanisms underlying this antagonistic bacterial-fungal interaction have been extensively studied, but knowledge on the long-term outcome of this interaction is currently lacking. Here, we used experimental evolution to explore the dynamics of fungal adaptation to recurrent exposure to CfTer331. Specifically, five single-spore isolates (SSIs) of AnN402 were evolved under three selection scenarios in liquid culture, i.e., (i) in the presence of CfTer331 for 80 growth cycles, (ii) in the absence of the bacterium for 80 cycles, and (iii) in the presence of CfTer331 for 40 cycles and then in its absence for 40 cycles. The evolved SSI lineages were then evaluated for phenotypic changes from the founder fungal strain, such as germinability with or without CfTer331. The analysis showed that recurrent exposure to CfTer331 selected for fungal lineages with reduced germinability and slower germination, even in the absence of CfTer331. In contrast, when AnN402 evolved in the absence of the bacteria, lineages with increased germinability and faster germination were favored. SSIs that were first evolved in the presence of CfTer331 and then in its absence showed intermediate phenotypes but overall were more similar to SSIs that evolved in the absence of CfTer331 for 80 cycles. This suggests that traits acquired from exposure to CfTer331 were reversible upon removal of the selection pressure. Overall, our study provides insights into the effects on fungi from the long-term coculture with bacteria. IMPORTANCE The use of antagonistic bacteria for managing fungal diseases is becoming increasingly popular, and thus there is a need to understand the implications of their long-term use against fungi. Most efforts have so far focused on characterizing the antifungal properties and mode of action of the bacterial antagonists, but the possible outcomes of the persisting interaction between antagonistic bacteria and fungi are not well understood. In this study, we used experimental evolution in order to explore the evolutionary aspects of an antagonistic bacterial-fungal interaction, using the antifungal bacterium Collimonas fungivorans and the fungus Aspergillus niger as a model system. We show that evolution in the presence or absence of the bacteria selects for fungal lineages with opposing and conditionally beneficial traits, such as slow and fast spore germination, respectively. Overall, our studies reveal that fungal responses to biotic factors related to antagonism could be to some extent predictable and reversible.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Oxalobacteraceae/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Interações Microbianas
10.
Microb Biotechnol ; 14(4): 1367-1384, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33347710

RESUMO

In greenhouse and field trials, a bacterial mixture of Collimonas arenae Cal35 and Bacillus velezensis FZB42, but not Cal35 alone or FZB42 alone, was able to protect tomato plants from challenge with the soilborne fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol). To identify genes and mechanisms underlying this property in Cal35, we screened a random transposon insertion library for loss of function and identified two mutants that were impaired completely or partially in their ability to halt the growth of a wide range of fungal species. In mutant 46A06, the transposon insertion was located in a biosynthetic gene cluster that was predicted to code for a hybrid polyketide synthase-non-ribosomal peptide synthetase, while mutant 60C09 was impacted in a gene cluster for the synthesis and secretion of sugar repeat units. Our data are consistent with a model in which both gene clusters are necessary for the production of an antifungal compound we refer to as carenaemins. We also show that the ability to produce carenaemin contributed significantly to the observed synergy between Cal35 and FZB42 in protecting tomato plants from Fol. We discuss the potential for supplementing Bacillus-based biocontrol products with Collimonas bacteria to boost efficacy of such products.


Assuntos
Fusarium , Solanum lycopersicum , Antifúngicos , Bacillus , Oxalobacteraceae , Doenças das Plantas
11.
Appl Microbiol Biotechnol ; 104(22): 9535-9550, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33037916

RESUMO

Indole-3-acetic acid (IAA) is a molecule with the chemical formula C10H9NO2, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (iac) is responsible for the aerobic degradation of IAA into catechol, and another (iaa) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac/iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac/iaa-carrying model strains of Pseudomonas putida, Enterobacter soli, Acinetobacter baumannii, Paraburkholderia phytofirmans, Caballeronia glathei, Aromatoleum evansii, and Aromatoleum aromaticum, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac/iaa-inspired research that addresses current gaps in knowledge, biotechnological applications of iac/iaa-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. KEY POINTS: • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.


Assuntos
Burkholderiaceae , Enterobacter , Ácidos Indolacéticos , Humanos , Ácidos Indolacéticos/metabolismo , Rhodocyclaceae
12.
Front Microbiol ; 11: 1485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765440

RESUMO

The attachment of foodborne pathogens to leaf surfaces is a complex process that involves multiple physical, chemical, and biological factors. Here, we report the results from a study designed to specifically determine the contribution of spinach leaf surface topography as it relates to leaf axis (abaxial and adaxial) and leaf age (15, 45, and 75 days old) to the ability of Escherichia coli to resist removal by surface wash, to avoid inactivation by chlorine, and to disperse through splash impact. We used fresh spinach leaves, as well as so-called "replicasts" of spinach leaf surfaces in the elastomer polydimethylsiloxane to show that leaf vein density correlated positively with the failure to recover E. coli from surfaces, not only using a simple water wash and rinse, but also a more stringent wash protocol involving a detergent. Such failure was more pronounced when E. coli was surface-incubated at 24°C compared to 4°C, and in the presence, rather than absence, of nutrients. Leaf venation also contributed to the ability of E. coli to survive a 50 ppm available chlorine wash and to laterally disperse by splash impact. Our findings suggest that the topographical properties of the leafy green surface, which vary by leaf age and axis, may need to be taken into consideration when developing prevention or intervention strategies to enhance the microbial safety of leafy greens.

13.
Environ Microbiol Rep ; 12(3): 306-313, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162788

RESUMO

Collimonas fungivorans Ter331 (CfTer331) is a soil bacterium that produces collimomycin, a secondary metabolite that inhibits the vegetative growth of fungi. Here we show that CfTer331 can also interfere with fungal spore germination and that collimomycin biosynthesis is required for this activity. More specifically, in co-cultures of Aspergillus niger N402 (AnN402) co-nidiospores with CfTer331, the rate of transition from the isotropic to polarized stage of the germination process was reduced and the relatively few AnN402 conidiospores that completed the germination process were less likely to survive than those that were arrested in the isotropic phase. By contrast, a collimomycin-deficient mutant of CfTer331 had no effect on germination: in its presence, as in the absence or delayed presence of CfTer331, unhindered germination of conidiospores allowed rapid establishment of AnN402 mycelium and the subsequent acidification of the culture medium to the detriment of any bacteria present. However, when challenged early enough with CfTer331, the collimomycin-dependent arrest of the AnN402 germination process enabled CfTer331 to prevent AnN402 from forming mycelia and to gain dominance in the culture. We propose that the collimomycin-dependent arrest of spore germination represents an early intervention strategy used by CfTer331 to mitigate niche construction by fungi in nature.


Assuntos
Antifúngicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Oxalobacteraceae/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Interações Microbianas , Metabolismo Secundário , Microbiologia do Solo , Esporos Fúngicos/crescimento & desenvolvimento
14.
Environ Microbiol Rep ; 12(1): 16-29, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31573142

RESUMO

Lactic acid bacteria (LAB) are essential for many fruit, vegetable and grain food and beverage fermentations. However, the numbers, diversity and plant-specific adaptions of LAB found on plant tissues prior to the start of those fermentations are not well understood. When measured, these bacteria have been recovered from the aerial surfaces of plants in a range from <10 CFU g-1 to over 108.5 CFU g-1 of plant tissue and in lower quantities from the soil and rhizosphere. Plant-associated LAB include well-known generalist taxa such as Lactobacillus plantarum and Leuconostoc mesenteroides, which are essential for numerous food and beverage fermentations. Other plant-associated LAB encompass specialist taxa such as Lactobacillus florum and Fructobacillus, many of which were discovered relatively recently and their significance on plants and in foods is not yet recognized. LAB recovered from plants possess the capacity to consume plant sugars, detoxify phenolic compounds and tolerate the numerous biotic and abiotic stresses common to plant surfaces. Although most generalist and some specialist LAB grow rapidly in food and beverages fermentations and can cause spoilage of fresh and fermented fruits and vegetables, the importance of living plants as habitats for these bacteria and LAB contributions to plant microbiomes remain to be shown.


Assuntos
Biodiversidade , Lactobacillales/fisiologia , Plantas/microbiologia , Adaptação Fisiológica , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Filogenia
15.
Phytopathology ; 110(2): 297-308, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31483224

RESUMO

The reduction-oxidation (redox) environment of the phytobiome (i.e., the plant-microbe interface) can strongly influence the outcome of the interaction between microbial pathogens, commensals, and their host. We describe a noninvasive method using a bacterial bioreporter that responds to reactive oxygen species and redox-active chemicals to compare microenvironments perceived by microbes during their initial encounter of the plant surface. A redox-sensitive variant of green fluorescent protein (roGFP2), responsive to changes in intracellular levels of reduced and oxidized glutathione, was expressed under the constitutive SP6 and fruR promoters in the epiphytic bacterium Pantoea eucalypti 299R (Pe299R/roGFP2). Analyses of Pe299R/roGFP2 cells by ratiometric fluorometry showed concentration-dependent responses to several redox active chemicals, including hydrogen peroxide (H2O2), dithiothreitol (DTT), and menadione. Changes in intracellular redox were detected within 5 min of addition of the chemical to Pe299R/roGFP2 cells, with approximate detection limits of 25 and 6 µM for oxidation by H2O2 and menadione, respectively, and 10 µM for reduction by DTT. Caffeic acid, chlorogenic acid, and ascorbic acid mitigated the H2O2-induced oxidation of the roGFP2 bioreporter. Aqueous washes of peach and rose flower petals from young blossoms created a lower redox state in the roGFP2 bioreporter than washes from fully mature blossoms. The bioreporter also detected differences in surface washes from peach fruit at different stages of maturity and between wounded and nonwounded sites. The Pe299R/roGFP2 reporter rapidly assesses differences in redox microenvironments and provides a noninvasive tool that may complement traditional redox-sensitive chromophores and chemical analyses of cell extracts.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental , Pantoea , Plantas , Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos , Expressão Gênica/efeitos dos fármacos , Glutationa/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/análise , Oxirredução , Pantoea/genética , Pantoea/metabolismo , Plantas/microbiologia , Espécies Reativas de Oxigênio/análise , Propriedades de Superfície , Vitamina K 3/análise
16.
Phytopathology ; 109(12): 2022-2032, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31433274

RESUMO

Huanglongbing (HLB) is a severe, incurable citrus disease caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas). Although citrus leaves serve as the site of initial infection, CLas is known to migrate to and colonize the root system; however, little is known about the impact of CLas infection on root metabolism and resident microbial communities. Scions of 'Lisbon' lemon and 'Washington Navel' orange grafted onto 'Carrizo' rootstock were grafted with either CLas-infected citrus budwood or uninfected budwood. Roots were obtained from trees 46 weeks after grafting and analyzed via 1H nuclear magnetic resonance spectroscopy to identify water-soluble root metabolites and high-throughput sequencing of 16S rRNA and ITS gene amplicons to determine the relative abundance of bacterial and fungal taxa in the root rhizosphere and endosphere. In both citrus varieties, 27 metabolites were identified, of which several were significantly different between CLas(+) and control plants. CLas infection also appeared to alter the microbial community structure near and inside the roots of citrus plants. Nonmetric multidimensional scaling (NMDS) and a principal coordinate analysis (PCoA) revealed distinct metabolite and microbial profiles, demonstrating that CLas impacts the root metabolome and microbiome in a manner that is variety-specific.


Assuntos
Citrus , Metaboloma , Microbiota , Rhizobiaceae , Biodiversidade , Citrus/microbiologia , DNA Espaçador Ribossômico/genética , Interações Microbianas , Microbiota/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/fisiologia , Washington
17.
Microbiol Resour Announc ; 8(28)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296680

RESUMO

Use of indole-3-acetic acid (IAA) as a carbon, nitrogen, and energy source by Pseudomonas putida 1290 is linked to the possession of a gene cluster that codes for conversion to catechol. Here, we present the genomic context of this iac gene cluster, which includes genes for IAA chemotaxis/transport and catechol catabolism.

18.
Phytopathology ; 109(5): 770-779, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30644330

RESUMO

Asymptomatic plant colonization is hypothesized to enhance persistence of pathogenic forms of Fusarium oxysporum. However, a correlation between pathogen populations on living, asymptomatic plant tissues and soilborne populations after tillage has not been demonstrated. Living and dead tissues of broccoli, lettuce, spinach, wheat, cilantro, raspberry, and strawberry plants grown in soil infested with F. oxysporum f. sp. fragariae (the cause of Fusarium wilt of strawberry) were assayed to quantify the incidence of infection and extent of colonization by this pathogen. All crops could be infected by F. oxysporum f. sp. fragariae but the extent of colonization varied between plant species. Pathogen population densities on nonliving crown tissues incorporated into the soil matrix were typically greater than those observed on living tissues. Crop-dependent differences in the inoculum density of F. oxysporum f. sp. fragariae in soil were only observed after decomposition of crop residue. Forty-four weeks after plants were incorporated into the soil, F. oxysporum f. sp. fragariae soil population densities were positively correlated with population densities on plant tissue fragments recovered at the same time point. Results indicate that asymptomatic colonization can have a significant, long-term impact on soilborne populations of Fusarium wilt pathogens. Cultural practices such as crop rotation should be leveraged to favor pathogen population decline by planting hosts that do not support extensive population growth on living or decomposing tissues.


Assuntos
Produtos Agrícolas/microbiologia , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Microbiologia do Solo , Agricultura/métodos , Fusarium/patogenicidade
20.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30054366

RESUMO

We show for soil bacterium Enterobacter soli LF7 that the possession of an indole-3-acetic acid catabolic (iac) gene cluster is causatively linked to the ability to utilize the plant hormone indole-3-acetic acid (IAA) as a carbon and energy source. Genome-wide transcriptional profiling by mRNA sequencing revealed that these iac genes, chromosomally arranged as iacHABICDEFG and coding for the transformation of IAA to catechol, were the most highly induced (>29-fold) among the relatively few (<1%) differentially expressed genes in response to IAA. Also highly induced and immediately downstream of the iac cluster were genes for a major facilitator superfamily protein (mfs) and enzymes of the ß-ketoadipate pathway (pcaIJD-catBCA), which channels catechol into central metabolism. This entire iacHABICDEFG-mfs-pcaIJD-catBCA gene set was constitutively expressed in an iacR deletion mutant, confirming the role of iacR, annotated as coding for a MarR-type regulator and located upstream of iacH, as a repressor of iac gene expression. In E. soli LF7 carrying the DNA region upstream of iacH fused to a promoterless gfp gene, green fluorescence accumulated in response to IAA at concentrations as low as 1.6 µM. The iacH promoter region also responded to chlorinated IAA, but not other aromatics tested, indicating a narrow substrate specificity. In an iacR deletion mutant, gfp expression from the iacH promoter region was constitutive, consistent with the predicted role of iacR as a repressor. A deletion analysis revealed putative -35/-10 promoter sequences upstream of iacH, as well as a possible binding site for the IacR repressor.IMPORTANCE Bacterial iac genes code for the enzymatic conversion of the plant hormone indole-3-acetic acid (IAA) to catechol. Here, we demonstrate that the iac genes of soil bacterium Enterobacter soli LF7 enable growth on IAA by coarrangement and coexpression with a set of pca and cat genes that code for complete conversion of catechol to central metabolites. This work contributes in a number of novel and significant ways to our understanding of iac gene biology in bacteria from (non-)plant environments. More specifically, we show that LF7's response to IAA involves derepression of the MarR-type transcriptional regulator IacR, which is quite fast (less than 25 min upon IAA exposure), highly specific (only in response to IAA and chlorinated IAA, and with few genes other than iac, cat, and pca induced), relatively sensitive (low micromolar range), and seemingly tailored to exploit IAA as a source of carbon and energy.


Assuntos
Proteínas de Bactérias/genética , Enterobacter/genética , Enterobacter/metabolismo , Regulação Bacteriana da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Microbiologia do Solo , Proteínas de Bactérias/metabolismo , Enterobacter/isolamento & purificação , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA