Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38901427

RESUMO

Sequential neuronal patterns are believed to support information processing in the cortex, yet their origin is still a matter of debate. We report that neuronal activity in the mouse postsubiculum (PoSub), where a majority of neurons are modulated by the animal's head direction, was sequentially activated along the dorsoventral axis during sleep at the transition from hyperpolarized "DOWN" to activated "UP" states, while representing a stable direction. Computational modeling suggested that these dynamics could be attributed to a spatial gradient of hyperpolarization-activated currents (Ih), which we confirmed in ex vivo slice experiments and corroborated in other cortical structures. These findings open up the possibility that varying amounts of Ih across cortical neurons could result in sequential neuronal patterns and that traveling activity upstream of the entorhinal-hippocampal circuit organizes large-scale neuronal activity supporting learning and memory during sleep.

2.
Cell Rep ; 43(4): 113839, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507409

RESUMO

Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.


Assuntos
Calcineurina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Homeostase , Sinapses , Animais , Sinapses/metabolismo , Sinapses/fisiologia , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos
3.
Elife ; 122023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843985

RESUMO

Datasets collected in neuroscientific studies are of ever-growing complexity, often combining high-dimensional time series data from multiple data acquisition modalities. Handling and manipulating these various data streams in an adequate programming environment is crucial to ensure reliable analysis, and to facilitate sharing of reproducible analysis pipelines. Here, we present Pynapple, the PYthon Neural Analysis Package, a lightweight python package designed to process a broad range of time-resolved data in systems neuroscience. The core feature of this package is a small number of versatile objects that support the manipulation of any data streams and task parameters. The package includes a set of methods to read common data formats and allows users to easily write their own. The resulting code is easy to read and write, avoids low-level data processing and other error-prone steps, and is open source. Libraries for higher-level analyses are developed within the Pynapple framework but are contained within a collaborative repository of specialized and continuously updated analysis routines. This provides flexibility while ensuring long-term stability of the core package. In conclusion, Pynapple provides a common framework for data analysis in neuroscience.


Assuntos
Neurociências , Software , Análise de Dados
4.
J Neurosci ; 43(7): 1074-1088, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796842

RESUMO

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.


Assuntos
Neurociências , Biofísica
5.
J Physiol ; 601(15): 3055-3069, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36086892

RESUMO

Naturally log-scaled quantities abound in the nervous system. Distributions of these quantities have non-intuitive properties, which have implications for data analysis and the understanding of neural circuits. Here, we review the log-scaled statistics of neuronal spiking and the relevant analytical probability distributions. Recent work using log-scaling revealed that interspike intervals of forebrain neurons segregate into discrete modes reflecting spiking at different timescales and are each well-approximated by a gamma distribution. Each neuron spends most of the time in an irregular spiking 'ground state' with the longest intervals, which determines the mean firing rate of the neuron. Across the entire neuronal population, firing rates are log-scaled and well approximated by the gamma distribution, with a small number of highly active neurons and an overabundance of low rate neurons (the 'dark matter'). These results are intricately linked to a heterogeneous balanced operating regime, which confers upon neuronal circuits multiple computational advantages and has evolutionarily ancient origins.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Neurônios/fisiologia
6.
Curr Opin Behav Sci ; 32: 126-135, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36034494

RESUMO

Hippocampal sharp wave-ripples (SWR) are thought to mediate brain-wide reactivation of memory traces in service of memory consolidation. However, rather than the faithful replay of neural activity observed during a specific experience, reactivation in both the hippocampus and downstream regions is more variable. We suggest that variable reactivation is a unifying feature of recurrent brain circuits. In the hippocampus, self-organized activation during offline states is constrained by existing attractor manifolds, or maps, and may be biased toward particular mapped locations by salient experience, which results in the appearance of experience-specific replay. Similarly, the impact of SWR-associated reactivation on downstream regions is not a simple transfer of hippocampal representational content. Rather, the response of downstream regions depends on a transformation function, defined by both the feedforward and local circuit architecture, as well as the 'listening state' of the downstream region. We hypothesize that SWRs act as a multiplexed signal, the mnemonic specificity of which is largely determined by this transformation function, and discuss the implications of this framing for theories of systems consolidation.

7.
Nat Commun ; 10(1): 2478, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171779

RESUMO

During non-rapid eye movement (NREM) sleep, neuronal populations in the mammalian forebrain alternate between periods of spiking and inactivity. Termed the slow oscillation in the neocortex and sharp wave-ripples in the hippocampus, these alternations are often considered separately but are both crucial for NREM functions. By directly comparing experimental observations of naturally-sleeping rats with a mean field model of an adapting, recurrent neuronal population, we find that the neocortical alternations reflect a dynamical regime in which a stable active state is interrupted by transient inactive states (slow waves) while the hippocampal alternations reflect a stable inactive state interrupted by transient active states (sharp waves). We propose that during NREM sleep in the rodent, hippocampal and neocortical populations are excitable: each in a stable state from which internal fluctuations or external perturbation can evoke the stereotyped population events that mediate NREM functions.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/fisiologia , Neocórtex/fisiologia , Neurônios/fisiologia , Sono de Ondas Lentas/fisiologia , Animais , Eletroencefalografia , Masculino , Modelos Neurológicos , Ratos , Sono/fisiologia , Fases do Sono/fisiologia
8.
Science ; 355(6328): 954-959, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28254942

RESUMO

γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label somatostatin-expressing (Sst) interneurons (GABAergic neurons specialized for dendritic inhibition), we discovered a layer-specific modulation of their activity in behaving mice. Sst interneuron subtypes, residing in different cortical layers and innervating complementary laminar domains, exhibited opposite activity changes during transitions to active wakefulness. The relative weight of vasoactive intestinal peptide-expressing (Vip) interneuron-mediated inhibition of distinct Sst interneurons and cholinergic modulation determined their in vivo activity. These results reveal a state-dependent laminar influence of Sst interneuron-mediated inhibition, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.


Assuntos
Dendritos/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Neocórtex/fisiologia , Inibição Neural , Vigília/fisiologia , Acetilcolina/metabolismo , Animais , Comportamento , Feminino , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neocórtex/citologia , Células Piramidais/fisiologia , Receptores Muscarínicos/metabolismo , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Curr Opin Neurobiol ; 44: 34-42, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28288386

RESUMO

Sleep is thought to mediate both mnemonic and homeostatic functions. However, the mechanism by which this brain state can simultaneously implement the 'selective' plasticity needed to consolidate novel memory traces and the 'general' plasticity necessary to maintain a well-functioning neuronal system is unclear. Recent findings show that both of these functions differentially affect neurons based on their intrinsic firing rate, a ubiquitous neuronal heterogeneity. Furthermore, they are both implemented by the NREM slow oscillation, which also distinguishes neurons based on firing rate during sequential activity at the DOWN→UP transition. These findings suggest a mechanism by which spiking activity during the slow oscillation acts to maintain network statistics that promote a skewed distribution of neuronal firing rates, and perturbation of that activity by hippocampal replay acts to integrate new memory traces into the existing cortical network.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Hipocampo/fisiologia , Humanos , Memória/fisiologia
10.
Neuron ; 90(4): 839-52, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27133462

RESUMO

Sleep exerts many effects on mammalian forebrain networks, including homeostatic effects on both synaptic strengths and firing rates. We used large-scale recordings to examine the activity of neurons in the frontal cortex of rats and first observed that the distribution of pyramidal cell firing rates was wide and strongly skewed toward high firing rates. Moreover, neurons from different parts of that distribution were differentially modulated by sleep substates. Periods of nonREM sleep reduced the activity of high firing rate neurons and tended to upregulate firing of slow-firing neurons. By contrast, the effect of REM was to reduce firing rates across the entire rate spectrum. Microarousals, interspersed within nonREM epochs, increased firing rates of slow-firing neurons. The net result of sleep was to homogenize the firing rate distribution. These findings are at variance with current homeostatic models and provide a novel view of sleep in adjusting network excitability.


Assuntos
Potenciais de Ação/fisiologia , Homeostase/fisiologia , Neocórtex/fisiologia , Sono/fisiologia , Animais , Masculino , Neurônios/fisiologia , Ratos Long-Evans , Transmissão Sináptica/fisiologia , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA