Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 16(6): 1365-1383, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122388

RESUMO

Radiation therapy can induce cellular senescence in cancer cells, leading to short-term tumor growth arrest but increased long-term recurrence. To better understand the molecular mechanisms involved, we developed a model of radiation-induced senescence in cultured cancer cells. The irradiated cells exhibited a typical senescent phenotype, including upregulation of p53 and its main target, p21, followed by a sustained reduction in cellular proliferation, changes in cell size and cytoskeleton organization, and senescence-associated beta-galactosidase activity. Mass spectrometry-based proteomic profiling of the senescent cells indicated downregulation of proteins involved in cell cycle progression and DNA repair, and upregulation of proteins associated with malignancy. A functional siRNA screen using a cell death-related library identified mitochondrial serine protease HtrA2 as being necessary for sustained growth arrest of the senescent cells. In search of direct HtrA2 substrates following radiation, we determined that HtrA2 cleaves the intermediate filament protein vimentin, affecting its cytoplasmic organization. Ectopic expression of active cytosolic HtrA2 resulted in similar changes to vimentin filament assembly. Thus, HtrA2 is involved in the cytoskeletal reorganization that accompanies radiation-induced senescence and the continuous maintenance of proliferation arrest.


Assuntos
Senescência Celular , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Neoplasias , Proteômica , Apoptose , Senescência Celular/fisiologia , Senescência Celular/efeitos da radiação , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/radioterapia , Células Tumorais Cultivadas , Vimentina/metabolismo
2.
Cell Death Differ ; 29(6): 1255-1266, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34992231

RESUMO

The role of programmed cell death during embryonic development has been described previously, but its specific contribution to peri- and post-implantation stages is still debatable. Here, we used transmission electron microscopy and immunostaining of E5.5-7.5 mouse embryos to investigate death processes during these stages of development. We report that in addition to canonical apoptosis observed in E5.5-E7.5 embryos, a novel type of cell elimination occurs in E7.5 embryos among the epiblasts at the apical side, in which cells shed membrane-enclosed fragments of cytosol and organelles into the lumen, leaving behind small, enucleated cell remnants at the apical surface. This process is caspase-independent as it occurred in Apaf1 knockout embryos. We suggest that this novel mechanism controls epiblast cell numbers. Altogether, this work documents the activation of two distinct programs driving irreversible terminal states of epiblast cells in the post-implantation mouse embryo.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Animais , Apoptose , Implantação do Embrião , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Gravidez
3.
Cell Cycle ; 16(21): 2003-2010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933588

RESUMO

Autophagy is critical for homeostasis and cell survival during stress, but can also lead to cell death, a little understood process that has been shown to contribute to developmental cell death in lower model organisms, and to human cancer cell death. We recently reported 1 on our thorough molecular and morphologic characterization of an autophagic cell death system involving resveratrol treatment of lung carcinoma cells. To gain mechanistic insight into this death program, we performed a signalome-wide RNAi screen for genes whose functions are necessary for resveratrol-induced death. The screen identified GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase, as an important mediator of autophagic cell death. Here we further show the physiological relevance of GBA1 to developmental cell death in midgut regression during Drosophila metamorphosis. We observed a delay in midgut cell death in two independent Gba1a RNAi lines, indicating the critical importance of Gba1a for midgut development. Interestingly, loss-of-function GBA1 mutations lead to Gaucher Disease and are a significant risk factor for Parkinson Disease, which have been associated with defective autophagy. Thus GBA1 is a conserved element critical for maintaining proper levels of autophagy, with high levels leading to autophagic cell death.


Assuntos
Autofagia/fisiologia , Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , Lisossomos/metabolismo , Animais , Drosophila/metabolismo , Humanos , Lisossomos/ultraestrutura , Doença de Parkinson/genética
4.
Cell Death Differ ; 24(7): 1288-1302, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28574511

RESUMO

Activating alternative cell death pathways, including autophagic cell death, is a promising direction to overcome the apoptosis resistance observed in various cancers. Yet, whether autophagy acts as a death mechanism by over consumption of intracellular components is still controversial and remains undefined at the ultrastructural and the mechanistic levels. Here we identified conditions under which resveratrol-treated A549 lung cancer cells die by a mechanism that fulfills the previous definition of autophagic cell death. The cells displayed a strong and sustained induction of autophagic flux, cell death was prevented by knocking down autophagic genes and death occurred in the absence of apoptotic or necroptotic pathway activation. Detailed ultrastructural characterization revealed additional critical events, including a continuous increase over time in the number of autophagic vacuoles, in particular autolysosomes, occupying most of the cytoplasm at terminal stages. This was followed by loss of organelles, disruption of intracellular membranes including the swelling of perinuclear space and, occasionally, a unique type of nuclear shedding. A signalome-wide shRNA-based viability screen was applied to identify positive mediators of this type of autophagic cell death. One top hit was GBA1, the Gaucher disease-associated gene, which encodes glucocerebrosidase, an enzyme that metabolizes glucosylceramide to ceramide and glucose. Interestingly, glucocerebrosidase expression levels and activity were elevated, concomitantly with increased intracellular ceramide levels, both of which correlated in time with the appearance of the unique death characteristics. Transfection with siGBA1 attenuated the increase in glucocerebrosidase activity and the intracellular ceramide levels. Most importantly, GBA1 knockdown prevented the strong increase in LC3 lipidation, and many of the ultrastructural changes characteristic of this type of autophagic cell death, including a significant decrease in cytoplasmic area occupied by autophagic vacuoles. Together, these findings highlight the critical role of GBA1 in mediating enhanced self-consumption of intracellular components and endomembranes, leading to autophagic cell death.


Assuntos
Autofagia , Glucosilceramidase/metabolismo , Interferência de RNA , Transdução de Sinais , Células A549 , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Necrose , Interferência de RNA/efeitos dos fármacos , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo , Estilbenos/farmacologia
5.
Apoptosis ; 19(2): 346-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24264886

RESUMO

DAP-kinase (DAPK) is a Ca(2+)-calmodulin regulated kinase with various, diverse cellular activities, including regulation of apoptosis and caspase-independent death programs, cytoskeletal dynamics, and immune functions. Recently, DAPK has also been shown to be a critical regulator of autophagy, a catabolic process whereby the cell consumes cytoplasmic contents and organelles within specialized vesicles, called autophagosomes. Here we present the latest findings demonstrating how DAPK modulates autophagy. DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms. The first involves a kinase cascade in which DAPK phosphorylates protein kinase D, which then phosphorylates and activates Vps34. In the second mechanism, DAPK directly phosphorylates Beclin 1, a necessary component of the Vps34 complex, thereby releasing it from its inhibitor, Bcl-2. In addition to these established pathways, we will discuss additional connections between DAPK and autophagy and potential mechanisms that still remain to be fully validated. These include myosin-dependent trafficking of Atg9-containing vesicles to the sites of autophagosome formation, membrane fusion events that contribute to expansion of the autophagosome membrane and maturation through the endocytic pathway, and trafficking to the lysosome on microtubules. Finally, we discuss how DAPK's participation in the autophagic process may be related to its function as a tumor suppressor protein, and its role in neurodegenerative diseases.


Assuntos
Autofagia/fisiologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Citoesqueleto/metabolismo , Humanos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Fosforilação , Proteínas Supressoras de Tumor/metabolismo
6.
EMBO Rep ; 12(9): 917-23, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21738225

RESUMO

Death-associated protein kinase (DAPk) was recently suggested by sequence homology to be a member of the ROCO family of proteins. Here, we show that DAPk has a functional ROC (Ras of complex proteins) domain that mediates homo-oligomerization and GTP binding through a defined P-loop motif. Upon binding to GTP, the ROC domain negatively regulates the catalytic activity of DAPk and its cellular effects. Mechanistically, GTP binding enhances an inhibitory autophosphorylation at a distal site that suppresses kinase activity. This study presents a new mechanism of intramolecular signal transduction, by which GTP binding operates in cis to affect the catalytic activity of a distal domain in the protein.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Transdução de Sinais , Proteínas Reguladoras de Apoptose/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Associadas com Morte Celular , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Proteína Oncogênica p21(ras)/metabolismo , Fosforilação , Ligação Proteica/genética , Multimerização Proteica
7.
Methods Mol Biol ; 661: 257-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20811988

RESUMO

Mitogen-activated protein (MAP) kinases are a large family of enzymes composed of about four subfamilies, each containing several isoforms and splicing variants. Many MAP kinases are coexpressed in each eukaryotic cell and coactivated in response to various stimuli. It is, therefore, difficult to explore the specific downstream effects of each species of MAPK. Expression of an intrinsically active variant of a MAPK, while other MAPKs are not active, allows for tracking of a specific array of substrates, target genes, and biological/pathological effects corresponding to the expressed molecule. This chapter describes a method for obtaining such intrinsically active MAPKs. Because of the unique mode of MAPK activation, which is absolutely dependent on unconventional phosphorylation (on neighboring Thr + Tyr residues), a rational design of mutations that would render the kinase intrinsically active is currently unfeasible. Our method is based, therefore, on a "Molecular Evolution" approach that uses the power of yeast genetics and is unbiased toward the mutation sites. We describe in detail how to prepare a large population of randomly mutated molecules of the desired MAPK and how to screen this library in a yeast strain lacking the relevant MAPK kinase (MAPKK). The idea is to identify MAPK variants that are fulfilling all MAPK functions and allow growth of this strain - namely, MAPK molecules that function biologically in the complete absence of their upstream activator. We further describe the details of the "plasmid-loss" assay used for distinguishing between true positive and false positive clones. Finally, we report on a new yeast strain lacking four MAPKKs that could serve as a universal target for screening for active MAPK of all subfamilies.


Assuntos
Evolução Molecular Direcionada/métodos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/isolamento & purificação , Animais , Reações Falso-Positivas , Técnicas de Inativação de Genes , Biblioteca Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/deficiência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese , Mutação , Fenótipo , Plasmídeos/genética , Saccharomyces cerevisiae/genética
8.
Biochem J ; 417(1): 331-40, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18778243

RESUMO

MAPKs (mitogen-activated protein kinases) are key components in cell signalling pathways. Under optimal growth conditions, their activity is kept off, but in response to stimulation it is dramatically evoked. Because of the high degree of evolutionary conservation at the levels of sequence and mode of activation, MAPKs are believed to share similar regulatory mechanisms in all eukaryotes and to be functionally substitutable between them. To assess the reliability of this notion, we systematically analysed the activity, regulation and phenotypic effects of mammalian MAPKs in yeast. Unexpectedly, all mammalian MAPKs tested were spontaneously phosphorylated in yeast. JNKs (c-Jun N-terminal kinases) lost their phosphorylation in pbs2Delta cells, but p38s and ERKs (extracellular-signal-regulated kinases) maintained their spontaneous phosphorylation even in pbs2Deltaste7Deltamkk1Deltamkk2Delta cells. Kinase-dead variants of ERKs and p38s were phosphorylated in strains lacking a single MEK (MAPK/ERK kinase), but not in pbs2Deltaste7Deltamkk1Deltamkk2Delta cells. Thus, in yeast, p38 and ERKs are phosphorylated via a combined mechanism of autophosphorylation and MEK-mediated phosphorylation (any MEK). We further addressed the mechanism allowing mammalian MAPKs to exploit yeast MEKs in the absence of any activating signal. We suggest that mammalian MAPKs lost during evolution a C-terminal region that exists in some yeast MAPKs. Indeed, removal of this region from Hog1 and Mpk1 rendered them spontaneously and highly phosphorylated. It implies that MAPKs possess an efficient inherent autoposphorylation capability that is suppressed in yeast MAPKs via a C-terminal domain and in mammalian MAPKs via as yet unknown means.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Animais , Western Blotting , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/isolamento & purificação
9.
J Biol Chem ; 283(50): 34500-10, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18829462

RESUMO

MAPKs are key components of cell signaling pathways with a unique activation mechanism: i.e. dual phosphorylation of neighboring threonine and tyrosine residues. The ERK enzymes form a subfamily of MAPKs involved in proliferation, differentiation, development, learning, and memory. The exact role of each Erk molecule in these processes is not clear. An efficient strategy for addressing this question is to activate individually each molecule, for example, by expressing intrinsically active variants of them. However, such molecules were not produced so far. Here, we report on the isolation, via a specifically designed genetic screen, of six variants (each carries a point mutation) of the yeast MAPK Mpk1/Erk that are active, independent of upstream phosphorylation. One of the activating mutations, R68S, occurred in a residue conserved in the mammalian Erk1 (Arg-84) and Erk2 (Arg-65) and in the Drosophila ERK Rolled (Arg-80). Replacing this conserved Arg with Ser rendered these MAPKs intrinsically active to very high levels when tested in vitro as recombinant proteins. Combination of the Arg to Ser mutation with the sevenmaker mutation (producing Erk2(R65S+D319N) and Rolled(R80S+D334N)) resulted in even higher activity (45 and 70%, respectively, in reference to fully active dually phosphorylated Erk2 or Rolled). Erk2(R65S) and Erk2(R65S+D319N) were found to be spontaneously active also when expressed in human HEK293 cells. We further revealed the mechanism of action of the mutants and show that it involves acquisition of autophosphorylation activity. Thus, a first generation of Erk molecules that are spontaneously active in vitro and in vivo has been obtained.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Sequência de Aminoácidos , Animais , Teste de Complementação Genética , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Fosforilação , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA