Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5074, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417463

RESUMO

ß cells may participate and contribute to their own demise during Type 1 diabetes (T1D). Here we report a role of their expression of Tet2 in regulating immune killing. Tet2 is induced in murine and human ß cells with inflammation but its expression is reduced in surviving ß cells. Tet2-KO mice that receive WT bone marrow transplants develop insulitis but not diabetes and islet infiltrates do not eliminate ß cells even though immune cells from the mice can transfer diabetes to NOD/scid recipients. Tet2-KO recipients are protected from transfer of disease by diabetogenic immune cells.Tet2-KO ß cells show reduced expression of IFNγ-induced inflammatory genes that are needed to activate diabetogenic T cells. Here we show that Tet2 regulates pathologic interactions between ß cells and immune cells and controls damaging inflammatory pathways. Our data suggests that eliminating TET2 in ß cells may reduce activating pathologic immune cells and killing of ß cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 1/patologia , Inflamação/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Sequência de Bases , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Dioxigenases , Progressão da Doença , Feminino , Humanos , Imunidade , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Linfócitos T/imunologia , Transcrição Gênica
2.
Ann Clin Transl Neurol ; 8(4): 877-886, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33704933

RESUMO

BACKGROUND: Inflammation in chronic active lesions occurs behind a closed blood-brain barrier and cannot be detected with MRI. Activated microglia are highly enriched for iron and can be visualized with quantitative susceptibility mapping (QSM), an MRI technique used to delineate iron. OBJECTIVE: To characterize the histopathological correlates of different QSM hyperintensity patterns in MS lesions. METHODS: MS brain slabs were imaged with MRI and QSM, and processed for histology. Immunolabeled cells were quantified in the lesion rim, center, and adjacent normal-appearing white matter (NAWM). Iron+ myeloid cell densities at the rims were correlated with susceptibilities. Human-induced pluripotent stem cell (iPSC)-derived microglia were used to determine the effect of iron on the production of reactive oxygen species (ROS) and pro-inflammatory cytokines. RESULTS: QSM hyperintensity at the lesion perimeter correlated with activated iron+ myeloid cells in the rim and NAWM. Lesions with high punctate or homogenous QSM signal contained no or minimally activated iron- myeloid cells. In vitro, iron accumulation was highest in M1-polarized human iPSC-derived microglia, but it did not enhance ROS or cytokine production. CONCLUSION: A high QSM signal outlining the lesion rim but not punctate signal in the center is a biomarker for chronic inflammation in white matter lesions.


Assuntos
Imageamento por Ressonância Magnética , Microglia , Esclerose Múltipla , Doenças Neuroinflamatórias , Substância Branca , Adulto , Biomarcadores , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Ferro/metabolismo , Masculino , Microglia/imunologia , Microglia/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias/diagnóstico por imagem , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/imunologia , Substância Branca/patologia
3.
Acta Neuropathol Commun ; 7(1): 130, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31405387

RESUMO

Activated myeloid cells and astrocytes are the predominant cell types in active multiple sclerosis (MS) lesions. Both cell types can adopt diverse functional states that play critical roles in lesion formation and resolution. In order to identify phenotypic subsets of myeloid cells and astrocytes, we profiled two active MS lesions with thirteen glial activation markers using imaging mass cytometry (IMC), a method for multiplexed labeling of histological sections. In the acutely demyelinating lesion, we found multiple distinct myeloid and astrocyte phenotypes that populated separate lesion zones. In the post-demyelinating lesion, phenotypes were less distinct and more uniformly distributed. In both lesions cell-to-cell interactions were not random, but occurred between specific glial subpopulations and lymphocytes. Finally, we demonstrated that myeloid, but not astrocyte phenotypes were activated along a lesion rim-to-center gradient, and that marker expression in glial cells at the lesion rim was driven more by cell-extrinsic factors than in cells at the center. This proof-of-concept study demonstrates that highly multiplexed tissue imaging, combined with the appropriate computational tools, is a powerful approach to study heterogeneity, spatial distribution and cellular interactions in the context of MS lesions. Identifying glial phenotypes and their interactions at different lesion stages may provide novel therapeutic targets for inhibiting acute demyelination and low-grade, chronic inflammation.


Assuntos
Astrócitos/patologia , Comunicação Celular/fisiologia , Esclerose Múltipla Recidivante-Remitente/patologia , Células Mieloides/patologia , Fenótipo , Adulto , Astrócitos/metabolismo , Feminino , Humanos , Masculino , Esclerose Múltipla Recidivante-Remitente/metabolismo , Células Mieloides/metabolismo
4.
Nat Commun ; 9(1): 5337, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559390

RESUMO

Epigenetic annotation studies of genetic risk variants for multiple sclerosis (MS) implicate dysfunctional lymphocytes in MS susceptibility; however, the role of central nervous system (CNS) cells remains unclear. We investigated the effect of the risk variant, rs7665090G, located near NFKB1, on astrocytes. We demonstrated that chromatin is accessible at the risk locus, a prerequisite for its impact on astroglial function. The risk variant was associated with increased NF-κB signaling and target gene expression, driving lymphocyte recruitment, in cultured human astrocytes and astrocytes within MS lesions, and with increased lesional lymphocytic infiltrates and lesion sizes. Thus, our study establishes a link between genetic risk for MS (rs7665090G) and dysfunctional astrocyte responses associated with increased CNS access for peripheral immune cells. MS may therefore result from variant-driven dysregulation of the peripheral immune system and of the CNS, where perturbed CNS cell function aids in establishing local autoimmune inflammation.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/citologia , Esclerose Múltipla/genética , Subunidade p50 de NF-kappa B/genética , Células Cultivadas , Sistema Nervoso Central/patologia , Predisposição Genética para Doença/genética , Humanos , Esclerose Múltipla/patologia , Subunidade p50 de NF-kappa B/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA