Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
JCI Insight ; 9(9)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602775

RESUMO

Allogeneic hematopoietic stem cell transplantation (aHSCT) can cure patients with otherwise fatal leukemias and lymphomas. However, the benefits of aHSCT are limited by graft-versus-host disease (GVHD). Minnelide, a water-soluble analog of triptolide, has demonstrated potent antiinflammatory and antitumor activity in several preclinical models and has proven both safe and efficacious in clinical trials for advanced gastrointestinal malignancies. Here, we tested the effectiveness of Minnelide in preventing acute GVHD as compared with posttransplant cyclophosphamide (PTCy). Strikingly, we found Minnelide improved survival, weight loss, and clinical scores in an MHC-mismatched model of aHSCT. These benefits were also apparent in minor MHC-matched aHSCT and xenogeneic HSCT models. Minnelide was comparable to PTCy in terms of survival, GVHD clinical score, and colonic length. Notably, in addition to decreased donor T cell infiltration early after aHSCT, several regulatory cell populations, including Tregs, ILC2s, and myeloid-derived stem cells in the colon were increased, which together may account for Minnelide's GVHD suppression after aHSCT. Importantly, Minnelide's GVHD prevention was accompanied by preservation of graft-versus-tumor activity. As Minnelide possesses anti-acute myeloid leukemia (anti-AML) activity and is being applied in clinical trials, together with the present findings, we conclude that this compound might provide a new approach for patients with AML undergoing aHSCT.


Assuntos
Diterpenos , Compostos de Epóxi , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Fenantrenos , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Animais , Camundongos , Transplante de Células-Tronco Hematopoéticas/métodos , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Humanos , Transplante Homólogo , Feminino , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Modelos Animais de Doenças , Efeito Enxerto vs Leucemia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino
2.
Transplant Cell Ther ; 29(5): 341.e1-341.e9, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804930

RESUMO

The present studies examined experimental transplant outcomes using mobilized peripheral blood from mice and humans together with FoxP3+Treg cells. Donor mice were treated with filgrastim and / or plerixafor and their peripheral blood (PB) displayed significant elevations in hematopoietic stem and progenitor populations. Some of these PB donors were concurrently administered a Treg expansion strategy consisting of a TL1A-Ig fusion protein low dose rIL-2. A significant increase (4-5x) in the frequency Tregs occurred during mobilization. C3H.SW PB was collected from mobilized and Treg unexpanded ("TrUM") or mobilized and Treg expanded ("TrEM") donors and transplanted into MHC-matched B6 (H2b) recipients. Recipients of TrEM, exhibited significantly reduced weight loss and clinical GVHD scores compared to recipients of TrUM. Notably, recipients of TrEM exhibited comparable GVL activity to TrUM recipients against leukemia levels. Next, huTregs (CD4+CD25+CD127lo) from a healthy human PB mobilized donor were expanded ex-vivo prior to transplant into NSG/ NOD-scid IL2Rgammanull mice. We found that treatment with ex-vivo expanded huTregs resulted in significant reduction of lethality and clinical xGVHD scores. Notably, post-transplant, PB huTregs levels remained elevated and the frequency of huCD4+Tconv and CD8+ cells was diminished supporting the improved xGVHD outcomes. These findings demonstrated that the use of mPB containing elevated Treg levels significantly reduced GVHD following "MUD" and MHC-mismatched mouse HSCT without loss of GVL activity. Moreover, utilizing ex-vivo expanded huTregs from a mobilized PB donor and added back to donor PB ameliorated xGVHD. In total, these studies support the notion that in vivo or ex-vivo manipulation of donor Tregs together with mobilized peripheral blood could provide therapeutic approaches to improve aHSCT outcomes.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Humanos , Animais , Camundongos , Linfócitos T Reguladores/transplante , Doadores de Sangue , Mobilização de Células-Tronco Hematopoéticas , Camundongos Endogâmicos C3H , Camundongos Endogâmicos NOD , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/prevenção & controle , Proteínas
3.
Am J Ophthalmol ; 247: 42-60, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36162534

RESUMO

PURPOSE: To investigate the role of aggressive meibomian gland dysfunction (MGD) in the immune pathogenesis of ocular graft-vs-host disease (GVHD). METHODS: In mice, an allogeneic GVHD model was established by transferring bone marrow (BM) and purified splenic T cells from C57BL/6J mice into irradiated C3-SW.H2b mice (BM+T). Control groups received BM only. Mice were scored clinically across the post-transplantation period. MGD severity was categorized using the degree of atrophy on harvested lids. Immune disease was analyzed using flow cytometry of tissues along with fluorescent tracking of BM cells onto the ocular surface. In humans, parameters from 57 patients with ocular GVHD presenting to the Duke Eye Center were retrospectively reviewed. MGD was categorized using the degree of atrophy on meibographs. Immune analysis was done using high-parameter flow cytometry on tear samples. RESULTS: Compared with BM only, BM+T mice had higher systemic disease scores that correlated with tear fluid loss and eyelid edema. BM+T had higher immune cell infiltration in the ocular tissues and higher CD4+-cell cytokine expression in draining lymph nodes. BM+T mice with worse MGD scores had significantly worse corneal staining. In patients with ocular GVHD, 96% had other organs affected. Patients with ocular GVHD had abnormal parameters on dry eye testing, high matrix metalloproteinase-9 positivity (92%), and abundance of immune cells in tear samples. Ocular surface disease signs were worse in patients with higher MGD severity scores. CONCLUSIONS: Ocular GVHD is driven by a systemic, T-cell-dependent process that causes meibomian gland damage and induces a robust form of ocular surface disease that correlates with MGD severity. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Assuntos
Síndromes do Olho Seco , Doenças Palpebrais , Doença Enxerto-Hospedeiro , Disfunção da Glândula Tarsal , Humanos , Animais , Camundongos , Disfunção da Glândula Tarsal/diagnóstico , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Glândulas Tarsais/patologia , Síndromes do Olho Seco/diagnóstico , Lágrimas/metabolismo , Doenças Palpebrais/diagnóstico
4.
PLoS Biol ; 20(10): e3001803, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269764

RESUMO

Brain asymmetry in the sensitivity to spectrotemporal modulation is an established functional feature that underlies the perception of speech and music. The left auditory cortex (ACx) is believed to specialize in processing fast temporal components of speech sounds, and the right ACx slower components. However, the circuit features and neural computations behind these lateralized spectrotemporal processes are poorly understood. To answer these mechanistic questions we use mice, an animal model that captures some relevant features of human communication systems. In this study, we screened for circuit features that could subserve temporal integration differences between the left and right ACx. We mapped excitatory input to principal neurons in all cortical layers and found significantly stronger recurrent connections in the superficial layers of the right ACx compared to the left. We hypothesized that the underlying recurrent neural dynamics would exhibit differential characteristic timescales corresponding to their hemispheric specialization. To investigate, we recorded spike trains from awake mice and estimated the network time constants using a statistical method to combine evidence from multiple weak signal-to-noise ratio neurons. We found longer temporal integration windows in the superficial layers of the right ACx compared to the left as predicted by stronger recurrent excitation. Our study shows substantial evidence linking stronger recurrent synaptic connections to longer network timescales. These findings support speech processing theories that purport asymmetry in temporal integration is a crucial feature of lateralization in auditory processing.


Assuntos
Córtex Auditivo , Percepção da Fala , Percepção do Tempo , Humanos , Camundongos , Animais , Córtex Auditivo/fisiologia , Percepção do Tempo/fisiologia , Estimulação Acústica , Percepção Auditiva/fisiologia , Fala , Percepção da Fala/fisiologia
5.
Front Immunol ; 13: 932527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799783

RESUMO

Human and mouse CD4+FoxP3+ T cells (Tregs) comprise non-redundant regulatory compartments which maintain self-tolerance and have been found to be of potential therapeutic usefulness in autoimmune disorders and transplants including allogeneic hematopoietic stem cell transplantation (allo-HSCT). There is substantial literature interrogating the application of donor derived Tregs for the prevention of graft versus host disease (GVHD). This Mini-Review will focus on the recipient's Tregs which persist post-transplant. Although treatment in patients with low dose IL-2 months post-HSCT are encouraging, manipulating Tregs in recipients early post-transplant is challenging, in part likely an indirect consequence of damage to the microenvironment required to support Treg expansion of which little is understood. This review will discuss the potential for manipulating recipient Tregs in vivo prior to and after HSCT (fusion proteins, mAbs). Strategies that would circumvent donor/recipient peripheral blood harvest, cell culture and ex-vivo Treg expansion will be considered for the translational application of Tregs to improve HSCT outcomes.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Tolerância Imunológica , Camundongos , Tolerância a Antígenos Próprios , Linfócitos T Reguladores
6.
Am J Ophthalmol ; 241: 262-271, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35271811

RESUMO

PURPOSE: To assess safety of gene therapy in G11778A Leber hereditary optic neuropathy (LHON). DESIGN: Phase 1 clinical trial. METHODS: Setting: single institution. PARTICIPANTS: Patients with G11778A LHON and chronic bilateral visual loss >12 months (group 1, n = 11), acute bilateral visual loss <12 months (group 2, n = 9), or unilateral visual loss (group 3, n = 8). INTERVENTION: unilateral intravitreal AAV2(Y444,500,730F)-P1ND4v2 injection with low, medium, high, and higher doses to worse eye for groups 1 and 2 and better eye for group 3. OUTCOME MEASURES: Best-corrected visual acuity (BCVA), adverse events, and vector antibody responses. Mean follow-up was 24 months (range, 12-36 months); BCVAs were compared with a published prospective natural history cohort with designated surrogate study and fellow eyes. RESULTS: Incident uveitis (8 of 28, 29%), the only vector-related adverse event, resulted in no attributable vision sequelae and was related to vector dose: 5 of 7 (71%) higher-dose eyes vs 3 of 21 (14%) low-, medium-, or high-dose eyes (P < .001). Incident uveitis requiring treatment was associated with increased serum AAV2 neutralizing antibody titers (p=0.007) but not serum AAV2 polymerase chain reaction. Improvements of ≥15-letter BCVA occurred in some treated and fellow eyes of groups 1 and 2 and some surrogate study and fellow eyes of natural history subjects. All study eyes (BCVA ≥20/40) in group 3 lost ≥15 letters within the first year despite treatment. CONCLUSIONS: G11778A LHON gene therapy has a favorable safety profile. Our results suggest that if there is an efficacy effect, it is likely small and not dose related. Demonstration of efficacy requires randomization of patients to a group not receiving vector in either eye.


Assuntos
Atrofia Óptica Hereditária de Leber , DNA Mitocondrial/genética , Dependovirus/genética , Dependovirus/metabolismo , Eletrorretinografia , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos , Humanos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Estudos Prospectivos , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Transtornos da Visão/etiologia , Acuidade Visual , Campos Visuais
7.
Transplant Cell Ther ; 28(6): 303.e1-303.e7, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302008

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is complicated by graft- versus-host disease (GVHD), which causes immune dysfunction and further delays immune reconstitution through its effects on primary and secondary lymphoid organs. Treatments to prevent GVHD and improve immune recovery following allo-HSCT are needed. Post-transplantation cyclophosphamide (PTCy) is a well-established and clinically widely used method for GVHD prophylaxis after HLA-matched as well as haploidentical allo-HSCT, as well as a promising strategy in the setting of mismatched unrelated donor allo-HSCT. Recently, regulatory T cells (Tregs), a critical subset for immune homeostasis and tolerance induction, have been evaluated for use as GVHD prophylaxis in experimental models and clinical trials. Natural killer (NK) cells are one of the first lymphoid populations to reconstitute following allo-HSCT and are important mediators of protective immunity against pathogens, and are also critical for limiting post-transplantation relapse of hematologic cancers. Several reports have noted that a delay in NK cell recovery may occur following experimental mouse allo-HSCT as well as after clinical allo-HSCT. Here we examined how 2 treatment strategies, PTCy and donor expanded Tregs (TrED), in experimental MHC-matched allo-HSCT affect NK recovery. Our experiments show that both strategies improved NK cell numbers, with PTCy slightly better than TrED, early after allo-HSCT (1 month) compared with untreated allo-HSCT recipients. Importantly, NK cell IFN-γ production and cytotoxic function, as reflected by CD107 expression as well as in vivo killing of NK-sensitive tumor cells, were improved using either PTCy or TrED versus control allo-HSCT recipients. In conclusion, both prophylactic treatments were found to be beneficial for NK recovery and NK cell function following MHC-matched minor antigen-mismatched experimental allo-HSCT. Improved NK recovery could help provide early immunity toward tumors and pathogens in these transplant recipients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Células Matadoras Naturais , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Linfócitos T Reguladores , Transplante Homólogo
8.
Front Med (Lausanne) ; 8: 656998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095169

RESUMO

Stevens Johnsons syndrome (SJS) is a mucocutaneous disorder caused by an autoimmune response most commonly to medications. Unless it is properly managed in the acute setting, this entity can affect the ocular surface causing chronic cicatrizing conjunctivitis with limbal stem cell deficiency and lid anomalies which ultimately result in corneal opacities that may limit patients' visual acuity. When this stage is reached, some patients might need to undergo some form of corneal and/or limbal stem cell transplantation that exposes an already sensitized immune system to a new alloantigen. While the innate immunity plays a role in corneal graft survival, adaptive immune responses play a major part in corneal graft rejection and failure, namely through CD4+ T cell lymphocytes. Hence, the management of the immune response to surgical transplant procedures in SJS patients, involves a dual approach that modulates the inflammatory response to a new alloantigen in the context of an autoimmune sensitized patient. This review will explore and discuss current perspectives and future directions in the field of ocular immunology on how to manage SJS immune responses to ocular surgical procedures, reviewing systemic and local immunosuppressive therapies and protocols to adequately manage this debilitating condition.

9.
Front Immunol ; 12: 636789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737937

RESUMO

Corneal transplantation (CT) is the most frequent type of solid organ transplant (SOT) performed worldwide. Unfortunately, immunological rejection is the primary cause of graft failure for CT and therefore advances in immune regulation to induce tolerance remains an unmet medical need. Recently, our work and others in pre-clinical studies found that cyclophosphamide (Cy) administered after ("post-transplant," PTCy) hematopoietic stem cell transplantation (HSCT), i.e., liquid transplants is effective for graft vs. host disease prophylaxis and enhances overall survival. Importantly, within the past 10 years, PTCy has been widely adopted for clinical HSCT and the results at many centers have been extremely encouraging. The present studies found that Cy can be effectively employed to prolong the survival of SOT, specifically mouse corneal allografts. The results demonstrated that the timing of PTCy administration is critical for these CT and distinct from the kinetics employed following allogeneic HSCT. PTCy was observed to interfere with neovascularization, a process critically associated with immune rejection of corneal tissue that ensues following the loss of ocular "immune privilege." PTCy has the potential to delete or directly suppress allo-reactive T cells and treatment here was shown to diminish T cell rejection responses. These PTCy doses were observed to spare significant levels of CD4+ FoxP3+ (Tregs) which were found to be functional and could readily receive stimulating signals leading to their in vivo expansion via TNFRSF25 and CD25 agonists. In total, we posit future studies can take advantage of Cy based platforms to generate combinatorial strategies for long-term tolerance induction.


Assuntos
Transplante de Córnea , Ciclofosfamida/uso terapêutico , Rejeição de Enxerto/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Aloenxertos/imunologia , Animais , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Rejeição de Enxerto/etiologia , Humanos , Tolerância Imunológica , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais
10.
Blood ; 137(14): 1871-1878, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33619537

RESUMO

Stimulator of interferon genes (STING) is an innate immune sensor of cytoplasmic dsDNA originating from microorganisms and host cells. STING plays an important role in the regulation of murine graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and may be similarly activated during other transplantation modalities. In this review, we discuss STING in allo-HSCT and its prospective involvement in autologous HSCT (auto-HSCT) and solid organ transplantation (SOT), highlighting its unique role in nonhematopoietic, hematopoietic, and malignant cell types.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Proteínas de Membrana/imunologia , Transplante de Órgãos , Animais , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Proteínas de Membrana/metabolismo , Transplante de Órgãos/métodos , Transdução de Sinais , Transplante Homólogo/métodos
11.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008621

RESUMO

Graft versus host disease (GVHD) is initiated by donor allo-reactive T cells activated against recipient antigens. Chronic GVHD (cGVHD) is characterized by immune responses that may resemble autoimmune features present in the scleroderma and Sjogren's syndrome. Unfortunately, ocular involvement occurs in approximately 60-90% of patients with cGVHD following allo-hematopoietic stem cell transplants (aHSCT). Ocular GVHD (oGVHD) may affect vision due to ocular adnexa damage leading to dry eye and keratopathy. Several other compartments including the skin are major targets of GVHD effector pathways. Using mouse aHSCT models, the objective was to characterize cGVHD associated alterations in the eye and skin to assess for correlations between these two organs. The examination of multiple models of MHC-matched and MHC-mismatched aHSCT identified a correlation between ocular and cutaneous involvement accompanying cGVHD. Studies detected a "positive" correlation, i.e., when cGVHD-induced ocular alterations were observed, cutaneous compartment alterations were also observed. When no or minimal ocular signs were detected, no or minimal skin changes were observed. In total, these findings suggest underlying cGVHD-inducing pathological immune mechanisms may be shared between the eye and skin. Based on the present observations, we posit that when skin involvement is present in aHSCT patients with cGVHD, the evaluation of the ocular surface by an ophthalmologist could potentially be of value.


Assuntos
Síndromes do Olho Seco/etiologia , Olho/patologia , Doença Enxerto-Hospedeiro/complicações , Inflamação , Pele/patologia , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/patologia , Camundongos , Transplante Homólogo
12.
Am J Pathol ; 190(10): 2000-2012, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745461

RESUMO

Regulatory T cells (Tregs) are non-redundant mediators of immune tolerance that are critical to prevent autoimmune disease and promote an anti-inflammatory tissue environment. Many individuals experience chronic diseases and physiologic changes associated with aging requiring long-term medication. Unfortunately, adverse effects accompany every pharmacologic intervention and may affect overall outcomes. We focus on medications typically prescribed during the treatment of prevalent chronic diseases and disorders, including cardiovascular disease, autoimmune disease, and menopausal symptoms, that affect >200 million individuals in the United States. Increasing studies continue to report that treatment of patients with estrogen, metformin, statins, vitamin D, and tumor necrosis factor blockers are unintentionally modulating the Treg compartment. Effects of these medications likely comprise direct and/or indirect interaction with Tregs via other immune and parenchymal populations. Differing and sometimes opposing effects on the Treg compartment have been observed using the same medication. The length of treatment, dosing regimen and stage of disease, patient age, ethnicity, and sex may account for such findings and determine the specific signaling pathways affected by the medication. Enhancing the Treg compartment can skew the patient's immune system toward an anti-inflammatory phenotype and therefore could provide unanticipated benefit. Currently, multiple medicines prescribed to large numbers of patients influence the Treg compartment; however, how such effects affect their disease outcome and long-term health remains unclear.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Fatores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia , Anti-Inflamatórios/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Fatores Imunológicos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Vitamina D/metabolismo
13.
Sci Transl Med ; 12(552)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669421

RESUMO

The stimulator of interferon genes (STING) pathway has been proposed as a key regulator of gastrointestinal homeostasis and inflammatory responses. Although STING reportedly protects against gut barrier damage and graft-versus-host disease (GVHD) after major histocompatibility complex (MHC)-mismatched allogeneic hematopoietic stem cell transplantation (aHSCT), its effect in clinically relevant MHC-matched aHSCT is unknown. Studies here demonstrate that STING signaling in nonhematopoietic cells promoted MHC-matched aHSCT-induced GVHD and that STING agonists increased type I interferon and MHC I expression in nonhematopoietic mouse intestinal organoid cultures. Moreover, mice expressing a human STING allele containing three single-nucleotide polymorphisms associated with decreased STING activity also developed reduced MHC-matched GVHD, demonstrating STING's potential clinical importance. STING-/- recipients experienced reduced GVHD with transplant of purified donor CD8+ T cells in both MHC-matched and MHC-mismatched models, reconciling the seemingly disparate results. Further examination revealed that STING deficiency reduced the activation of donor CD8+ T cells early after transplant and promoted recipient MHC class II+ antigen-presenting cell (APC) survival. Therefore, APC persistence in STING pathway absence may account for the increased GVHD mediated by CD4+ T cells in completely mismatched recipients. In total, our findings have important implications for regulating clinical GVHD by targeting STING early after aHSCT and demonstrate that an innate immune pathway has opposing effects on the outcome of aHSCT, depending on the donor/recipient MHC disparity.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Transplante de Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Camundongos , Subpopulações de Linfócitos T
14.
Biol Blood Marrow Transplant ; 25(12): 2338-2349, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415899

RESUMO

Graft-versus-host disease (GVHD) remains a major complication of allogeneic hematopoietic cell transplantation. Acute GVHD (aGVHD) results from direct damage by donor T cells, whereas the biology of chronic GVHD (cGVHD) with its autoimmune-like manifestations remains poorly understood, mainly because of the paucity of representative preclinical models. We examined over an extended time period 7 MHC-matched, minor antigen-mismatched mouse models for development of cGVHD. Development and manifestations of cGVHD were determined by a combination of MHC allele type and recipient strain, with BALB recipients being the most susceptible. The C57BL/6 into BALB.B combination most closely modeled the human syndrome. In this strain combination moderate aGVHD was observed and BALB.B survivors developed overt cGVHD at 6 to 12 months affecting eyes, skin, and liver. Naïve CD4+ cells caused this syndrome as no significant pathology was induced by grafts composed of purified hematopoietic stem cells (HSCs) or HSC plus effector memory CD4+ or CD8+ cells. Furthermore, co-transferred naïve and effector memory CD4+ T cells demonstrated differential homing patterns and locations of persistence. No clear association with donor Th17 cells and the phenotype of aGVHD or cGVHD was observed in this model. Donor CD4+ cells caused injury to medullary thymic epithelial cells, a key population responsible for negative T cell selection, suggesting that impaired thymic selection was an underlying cause of the cGVHD syndrome. In conclusion, we report for the first time that the C57BL/6 into BALB.B combination is a representative model of cGVHD that evolves from immunologic events during the early post-transplant period.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Doença Crônica , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/patologia , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Células Th17/patologia
15.
Nat Commun ; 10(1): 2783, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239458

RESUMO

The left hemisphere's dominance in processing social communication has been known for over a century, but the mechanisms underlying this lateralized cortical function are poorly understood. Here, we compare the structure, function, and development of each auditory cortex (ACx) in the mouse to look for specializations that may underlie lateralization. Using Fos brain volume imaging, we found greater activation in the left ACx in response to vocalizations, while the right ACx responded more to frequency sweeps. In vivo recordings identified hemispheric differences in spectrotemporal selectivity, reinforcing their functional differences. We then compared the synaptic connectivity within each hemisphere and discovered lateralized circuit-motifs that are hearing experience-dependent. Our results suggest a specialist role for the left ACx, focused on facilitating the detection of specific vocalization features, while the right ACx is a generalist with the ability to integrate spectrotemporal features more broadly.


Assuntos
Córtex Auditivo/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/diagnóstico por imagem , Percepção Auditiva , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos CBA
16.
Haematologica ; 104(7): 1309-1321, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31221786

RESUMO

CD4+FoxP3+ regulatory T cells (Tregs) are a non-redundant population critical for the maintenance of self-tolerance. Over the past decade, the use of these cells for therapeutic purposes in transplantation and autoimmune disease has emerged based on their capacity to inhibit immune activation. Basic science discoveries have led to identifying key receptors on Tregs that can regulate their proliferation and function. Notably, the understanding that IL-2 signaling is crucial for Treg homeostasis promoted the hypothesis that in vivo IL-2 treatment could provide a strategy to control the compartment. The use of low-dose IL-2 in vivo was shown to selectively expand Tregs versus other immune cells. Interestingly, a number of other Treg cell surface proteins, including CD28, CD45, IL-33R and TNFRSF members, have been identified which can also induce activation and proliferation of this population. Pre-clinical studies have exploited these observations to prevent and treat mice developing autoimmune diseases and graft-versus-host disease post-allogeneic hematopoietic stem cell transplantation. These findings support the development of translational strategies to expand Tregs in patients. Excitingly, the use of low-dose IL-2 for patients suffering from graft-versus-host disease and autoimmune disease has demonstrated increased Treg levels together with beneficial outcomes. To date, promising pre-clinical and clinical studies have directly targeted Tregs and clearly established the ability to increase their levels and augment their function in vivo Here we review the evolving field of in vivo Treg manipulation and its application to allogeneic hematopoietic stem cell transplantation.


Assuntos
Doenças Autoimunes/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Fatores de Transcrição Forkhead/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/imunologia , Doença Enxerto-Hospedeiro/imunologia , Humanos , Camundongos
17.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333311

RESUMO

Posttransplant cyclophosphamide (PTCy) has been found to be effective in ameliorating acute graft-versus-host disease (GVHD) in patients following allogeneic hematopoietic stem cell transplantation (aHSCT). Adoptive transfer of high numbers of donor Tregs in experimental aHSCT has shown promise as a therapeutic modality for GVHD regulation. We recently described a strategy for in vivo Treg expansion targeting two receptors: TNFRSF25 and CD25. To date, there have been no direct comparisons between the use of PTCy and Tregs regarding outcome and immune reconstitution within identical groups of transplanted mice. Here, we assessed these two strategies and found both decreased clinical GVHD and improved survival long term. However, recipients transplanted with Treg-expanded donor cells (TrED) exhibited less weight loss early after HSCT. Additionally, TrED recipients demonstrated less thymic damage, significantly more recent thymic emigrants, and more rapid lymphoid engraftment. Three months after HSCT, PTCy-treated and TrED recipients showed tolerance to F1 skin allografts and comparable immune function. Overall, TrED was found superior to PTCy with regard to weight loss early after transplant and initial lymphoid engraftment. Based on these findings, we speculate that morbidity and mortality after transplant could be diminished following TrED transplant into aHSCT recipients, and, therefore, that TrED could provide a promising clinical strategy for GVHD prophylaxis.


Assuntos
Transferência Adotiva/métodos , Ciclofosfamida/administração & dosagem , Doença Enxerto-Hospedeiro/prevenção & controle , Reconstituição Imune , Linfócitos T Reguladores/transplante , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/mortalidade , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Camundongos , Análise de Sobrevida , Linfócitos T Reguladores/imunologia , Doadores de Tecidos , Transplante Homólogo/efeitos adversos , Resultado do Tratamento
18.
Biol Blood Marrow Transplant ; 24(9): 1788-1794, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29751114

RESUMO

Regulatory T cells (Tregs) are essential for the maintenance of tolerance and immune homeostasis. In allogeneic hematopoietic stem cell transplantation (aHSCT), transfer of appropriate Treg numbers is a promising therapy for the prevention of graft-versus-host disease (GVHD). We have recently reported a novel approach that induces the marked expansion and selective activation of Tregs in vivo by targeting tumor necrosis factor receptor superfamily 25 (TNFRSF25) and CD25. A potential advance to promote clinical application of Tregs to ameliorate GVHD and other disorders would be the generation of more potent Treg populations. Here we wanted to determine if very low doses of Tregs generated using the "2-pathway" stimulation protocol via TL1A-Ig fusion protein and low-dose IL-2 (targeting TNFRSF25 and CD25, respectively) could be used to regulate preclinical GVHD. Analysis of such 2-pathway expanded Tregs identified higher levels of activation and functional molecules (CD103, ICOS-1, Nrp-1, CD39, CD73, il-10, and tgfb1) versus unexpanded Tregs. Additionally, in vitro assessment of 2-pathway stimulated Tregs indicated enhanced suppressor activity. Notably, transplant of extremely low numbers of these Tregs (1:6 expanded Tregs/conventional T cells) suppressed GVHD after an MHC-mismatched aHSCT. Overall, these results demonstrate that 2-pathway stimulated CD4+ FoxP3+ Tregs were quantitatively and qualitatively more functionally effective than unexpanded Tregs. In total, the findings in this study support the notion that such 2-pathway stimulated Tregs may be useful for prevention of GVHD and ultimately promote more widespread application of aHSCT in the clinic.


Assuntos
Antígenos CD4/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Doença Enxerto-Hospedeiro/genética , Tolerância Imunológica/imunologia , Animais , Feminino , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Humanos , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/imunologia , Doadores de Tecidos
19.
Front Immunol ; 9: 3104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30733722

RESUMO

A recent approach for limiting production of pro-inflammatory cytokines has been to target bromodomain and extra-terminal (BET) proteins. These epigenetic readers of histone acetylation regulate transcription of genes involved in inflammation, cardiovascular disease, and cancer. Development of BET inhibitors (BETi) has generated enormous interest for their therapeutic potential. Because inflammatory signals and donor T cells promote graft-versus-host disease (GVHD), regulating both pathways could be effective to abrogate this disorder. The objective of the present study was to identify a BETi which did not interfere in vivo with CD4+FoxP3+ regulatory T cell (Treg) expansion and function to utilize together with Tregs following allogeneic hematopoietic stem cell transplantation (aHSCT) to ameliorate GVHD. We have reported that Tregs can be markedly expanded and selectively activated with increased functional capacity by targeting TNFRSF25 and CD25 with TL1A-Ig and low dose IL-2, respectively. Here, mice were treated over 7 days (TL1A-Ig + IL-2) together with BETi. We found that the BETi EP11313 did not decrease frequency/numbers or phenotype of expanded Tregs as well as effector molecules, such as IL-10 and TGF-ß. However, BETi JQ1 interfered with Treg expansion and altered subset distribution and phenotype. Notably, in Treg expanded mice, EP11313 diminished tnfa and ifng but not il-2 RNA levels. Remarkably, Treg pSTAT5 expression was not affected by EP11313 supporting the notion that Treg IL-2 signaling remained intact. MHC-mismatched aHSCT (B6 → BALB/c) was performed using in vivo expanded donor Tregs with or without EP11313 short-term treatment in the recipient. Early post-transplant, improvement in the splenic and LN CD4/CD8 ratio along with fewer effector cells and high Treg levels in aHSCT recipients treated with expanded Tregs + EP11313 was detected. Interestingly, this group exhibited a significant diminution of GVHD clinical score with less skin and ocular involvement. Finally, using low numbers of highly purified expanded Tregs, improved clinical GVHD scores were observed in EP11313 treated recipients. In total, we conclude that use of this novel combinatorial strategy can suppress pre-clinical GVHD and posit, in vivo EP11313 treatment might be useful combined with Treg expansion therapy for treatment of diseases involving inflammatory responses.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunossupressores/farmacologia , Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/transplante , Animais , Azepinas/farmacologia , Azepinas/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Doença Enxerto-Hospedeiro/imunologia , Humanos , Imunossupressores/uso terapêutico , Interleucina-2/imunologia , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Domínios Proteicos/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transplante Homólogo/efeitos adversos , Resultado do Tratamento , Triazóis/farmacologia , Triazóis/uso terapêutico
20.
Biol Blood Marrow Transplant ; 23(5): 757-766, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28219835

RESUMO

Regulatory T cells (Tregs) are critical for self-tolerance. Although adoptive transfer of expanded Tregs limits graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation (HSCT), ex vivo generation of large numbers of functional Tregs remains difficult. Here, we demonstrate that in vivo targeting of the TNF superfamily receptor TNFRSF25 using the TL1A-Ig fusion protein, along with IL-2, resulted in transient but massive Treg expansion in donor mice, which peaked within days and was nontoxic. Tregs increased in multiple compartments, including blood, lymph nodes, spleen, and colon (GVHD target tissue). Tregs did not expand in bone marrow, a critical site for graft-versus-malignancy responses. Adoptive transfer of in vivo-expanded Tregs in the setting of MHC-mismatched or MHC-matched allogeneic HSCT significantly ameliorated GVHD. Critically, transplantation of Treg-expanded donor cells facilitated transplant tolerance without GVHD, with complete sparing of graft-versus-malignancy. This approach may prove valuable as a therapeutic strategy promoting transplantation tolerance.


Assuntos
Transferência Adotiva/métodos , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas/métodos , Linfócitos T Reguladores/transplante , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Doença Enxerto-Hospedeiro/tratamento farmacológico , Imunoglobulinas/farmacologia , Interleucina-2/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Tolerância a Antígenos Próprios , Linfócitos T Reguladores/citologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA