Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 34(6): 8475-8492, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32385951

RESUMO

Mitochondria are dynamic organelles that can change shape and size depending on the needs of the cell through the processes of mitochondrial fission and fusion. In this work, we investigated the role of mitochondrial dynamics in organismal stress response. By using C. elegans as a genetic model, we could visualize mitochondrial morphology in a live organism with well-established stress assays and well-characterized stress response pathways. We found that disrupting mitochondrial fission (DRP1/drp-1) or fusion (OPA1/eat-3, MFN/fzo-1) genes caused alterations in mitochondrial morphology that impacted both mitochondrial function and physiologic rates. While both mitochondrial fission and mitochondrial fusion mutants showed increased sensitivity to osmotic stress and anoxia, surprisingly we found that the mitochondrial fusion mutants eat-3 and fzo-1 are more resistant to both heat stress and oxidative stress. In exploring the mechanism of increased stress resistance, we found that disruption of mitochondrial fusion genes resulted in the upregulation of multiple stress response pathways. Overall, this work demonstrates that disrupting mitochondrial dynamics can have opposite effects on resistance to different types of stress. Our results suggest that disruption of mitochondrial fusion activates multiple stress response pathways that enhance resistance to specific stresses.


Assuntos
Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Estresse Fisiológico/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Organelas/metabolismo
2.
BMC Biol ; 16(1): 147, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563508

RESUMO

BACKGROUND: The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway activated by disruption of proteostasis in the mitochondria. This pathway has been proposed to influence lifespan, with studies suggesting that mitoUPR activation has complex effects on longevity. RESULTS: Here, we examined the contribution of the mitoUPR to the survival and lifespan of three long-lived mitochondrial mutants in Caenorhabditis elegans by modulating the levels of ATFS-1, the central transcription factor that mediates the mitoUPR. We found that clk-1, isp-1, and nuo-6 worms all exhibit an ATFS-1-dependent activation of the mitoUPR. While loss of atfs-1 during adulthood does not affect lifespan in any of these strains, absence of atfs-1 during development prevents clk-1 and isp-1 worms from reaching adulthood and reduces the lifespan of nuo-6 mutants. Examining the mechanism by which deletion of atfs-1 reverts nuo-6 lifespan to wild-type, we find that many of the transcriptional changes present in nuo-6 worms are mediated by ATFS-1. Genes exhibiting an ATFS-1-dependent upregulation in nuo-6 worms are enriched for transcripts that function in stress response and metabolism. Consistent, with this finding, loss of atfs-1 abolishes the enhanced stress resistance observed in nuo-6 mutants and prevents upregulation of multiple stress response pathways including the HIF-1-mediated hypoxia response, SKN-1-mediated oxidative stress response and DAF-16-mediated stress response. CONCLUSIONS: Our results suggest that in the long-lived mitochondrial mutant nuo-6 activation of the mitoUPR causes atfs-1-dependent changes in the expression of genes involved in stress response and metabolism, which contributes to the extended longevity observed in this mutant. This work demonstrates that the mitoUPR can modulate multiple stress response pathways and suggests that it is crucial for the development and lifespan of long-lived mitochondrial mutants.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Longevidade/genética , Mutação , Estresse Oxidativo/fisiologia , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA