Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 117: 105538, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072369

RESUMO

Several viruses are transmitted by eriophyid mites (Acariformes: Eriophyoidea) including blackberry leaf mottle-associated emaravirus (BLMaV) (Emaravirus rubi). BLMaV is transmitted by an unidentified eriophyid species and is involved in blackberry yellow vein, a devastating disease in the southeastern United States. In this study, we assessed the eriophyid mite Phylocoptes parviflori as a vector of BLMaV and clarified its taxonomic status as it was previously synonymized with Phyllocoptes gracilis. P. parviflori can efficiently transmit BLMaV. The virus was found to cause yellow vein disease symptoms on 'Ouachita' blackberry marking a paradigm shift as disease symptoms have always been associated with multiple virus infections. Therefore, we propose renaming the virus to blackberry leaf mottle virus. The occurrence of P. parviflori on wild and cultivated blackberries, as well as its ability to colonize other Rubus species, enhances its importance as a major contributor to the spread of yellow vein disease.


Assuntos
Ácaros , Vírus de RNA , Rubus , Animais , Vírus Satélites , Folhas de Planta
2.
Exp Appl Acarol ; 89(2): 171-199, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36795266

RESUMO

Worldwide, the tomato russet mite (TRM), Aculops lycopersici (Eriophyidae), is a key pest on cultivated tomato in addition to infesting other cultivated and wild Solanaceae; however, basic information on TRM supporting effective control strategies is still lacking, mainly regarding its taxonomic status and genetic diversity and structure. As A. lycopersici is reported on different species and genera of host plants, populations associated with different host plants may constitute specialized cryptic species, as shown for other eriophyids previously considered generalists. The main aims of this study were to (i) confirm the TRM taxonomic unity of populations from different host plants and localities as well as the species' oligophagy, and (ii) to advance the understanding of TRM host relationship and invasion history. For this purpose, we evaluated the genetic variability and structure of populations from different host plants along crucial areas of occurrence, including the area of potential origin, based on DNA sequences of mitochondrial (cytochrome c oxidase subunit I) and nuclear (internal transcribed spacer, D2 28S) genomic regions. Specimens from South America (Brazil) and Europe (France, Italy, Poland, The Netherlands) were collected from tomato and other solanaceous species from the genera Solanum and Physalis. Final TRM datasets were composed of 101, 82 and 50 sequences from the COI (672 bp), ITS (553 bp) and D2 (605 bp) regions, respectively. Distributions and frequencies of haplotypes (COI) and genotypes (D2 and ITS1) were inferred; pairwise genetic distance comparisons, and phylogenetic analysis were performed, including Bayesian Inference (BI) combined analysis. Our results showed that genetic divergences for mitochondrial and nuclear genomic regions from TRM associated with different host plants were lower than those observed in other eriophyid taxa, confirming conspecificity of TRM populations and oligophagy of this eriophyid mite. Four haplotypes (cH) were identified from the COI sequences with cH1 being the most frequent, representing 90% of all sequences occurring in all host plants studied (Brazil, France, The Netherlands); the other haplotypes were present exclusively in Brazilian populations. Six variants (I) were identified from the ITS sequences: I-1 was the most frequent (76.5% of all sequences), spread in all countries and associated with all host plants, except S. nigrum. Just one D2 sequence variant was found in all studied countries. The genetic homogeneity among populations highlights the occurrence of a highly invasive and oligophagous haplotype. These results failed to corroborate the hypothesis that differential symptomatology or damage intensity among tomato varieties and solanaceous host plants could be due to the genetic diversity of the associated mite populations. The genetic evidence, along with the history of spread of cultivated tomato, corroborates the hypothesis of a South American origin of TRM.


Assuntos
Ácaros , Solanum lycopersicum , Animais , Haplótipos , Solanum lycopersicum/genética , Filogenia , Ácaros/genética , Teorema de Bayes , Brasil , Variação Genética
3.
Plant Dis ; 107(8): 2313-2315, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36724024

RESUMO

Rose rosette devastates the ornamentals industry in the United States. The disease, caused by rose rosette emaravirus (RRV), is vectored by the eriophyoid mite Phyllocoptes fructiphilus (Acari: Eriophyoidea). In this communication, we investigate two other Phyllocoptes species, P. adalius and P. arcani, for their vector competency and transmission efficiencies in single and multiple mite transfer experiments. P. arcani was identified as a second vector of RRV, a finding of significance for the epidemiology of the disease, as the second vector may be present in plants where P. fructiphilus is absent.


Assuntos
Ácaros , Vírus de RNA , Rosa , Animais , Estados Unidos , Plantas
4.
Evol Appl ; 15(10): 1639-1652, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330306

RESUMO

Understanding pest evolution in agricultural systems is crucial for developing effective and innovative pest control strategies. Types of cultivation, such as crop monocultures versus polycultures or crop rotation, may act as a selective pressure on pests' capability to exploit the host's resources. In this study, we examined the herbivorous mite Aceria tosichella (commonly known as wheat curl mite), a widespread wheat pest, to understand how fluctuating versus stable environments influence its niche breadth and ability to utilize different host plant species. We subjected a wheat-bred mite population to replicated experimental evolution in a single-host environment (either wheat or barley), or in an alternation between these two plant species every three mite generations. Next, we tested the fitness of these evolving populations on wheat, barley, and on two other plant species not encountered during experimental evolution, namely rye and smooth brome. Our results revealed that the niche breadth of A. tosichella evolved in response to the level of environmental variability. The fluctuating environment expanded the niche breadth by increasing the mite's ability to utilize different plant species, including novel ones. Such an environment may thus promote flexible host-use generalist phenotypes. However, the niche expansion resulted in some costs expressed as reduced performances on both wheat and barley as compared to specialists. Stable host environments led to specialized phenotypes. The population that evolved in a constant environment consisting of barley increased its fitness on barley without the cost of utilizing wheat. However, the population evolving on wheat did not significantly increase its fitness on wheat, but decreased its performance on barley. Altogether, our results indicated that, depending on the degree of environmental heterogeneity, agricultural systems create different conditions that influence pests' niche breadth evolution, which may in turn affect the ability of pests to persist in such systems.

5.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184165

RESUMO

Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.

6.
Sci Rep ; 12(1): 1914, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115562

RESUMO

Plants employ different chemicals to protect themselves from herbivory. These defenses may be constitutive or triggered by stress. The chemicals can be toxic, act as repellents, phagosuppressants and/or phago-deterrents. The two-spotted spider mite (Tetranychus urticae) is a generalist arthropod herbivorous pest and its feeding causes extensive damage both to crops and wild plants. Cyclotides are cyclic peptides involved in host-plant defenses. A single Viola sp. can produce more than a hundred cyclotides with different biological activities and roles. The organ and tissue specific cyclotide patterns change over the seasons and/or with environment, but the role of biotic/abiotic stress in shaping them remains unclear. Here, we demonstrate the involvement of cyclotides in mutual interactions between violets and mites. We used immunohistochemistry and mass spectrometry imaging to show the ingested cyclotides in T. urticae and assess the Viola odorata response to mite feeding. Moreover, to assess how mites are affected by feeding on violets, acceptance and reproductive performance was compared between Viola uliginosa, V. odorata and Phaseolus vulgaris. We demonstrate that cyclotides had been taken in by mites feeding on the violets. The ingested peptides were found in contact with epithelial cells of the mite digestive system, in the fecal matter, feces, ovary and eggs. Mites preferred common bean plants (P. vulgaris) to any of the violet species; the latter affected their reproductive performance. The production of particular cyclotides in V. odorata (denoted by molecular weights: 2979, 3001, 3017, 3068, 3084, 3123) was activated by mite feeding and their levels were significantly elevated compared to the control after 5 and 21 days of infestation. Specific cyclotides may affect mites by being indigestible or through direct interaction with cells in the mite digestive tract and reproductive organs. A group of particular peptides in V. odorata appears to be involved in defense response against herbivores.


Assuntos
Ciclotídeos/metabolismo , Herbivoria , Phaseolus/parasitologia , Tetranychidae/patogenicidade , Viola/parasitologia , Animais , Digestão , Interações Hospedeiro-Parasita , Phaseolus/metabolismo , Especificidade da Espécie , Tetranychidae/metabolismo , Fatores de Tempo , Distribuição Tecidual , Viola/metabolismo
7.
Sci Rep ; 12(1): 551, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017605

RESUMO

Dispersal and colonisation determine the survival and success of organisms, and influence the structure and dynamics of communities and ecosystems in space and time. Both affect the gene flow between populations, ensuring sufficient level of genetic variation and improving adaptation abilities. In haplodiploids, such as Aceria tosichella (wheat curl mite, WCM), a population may be founded even by a single unfertilised female, so there is a risk of heterozygosity loss (i.e. founder effect). It may lead to adverse outcomes, such as inbreeding depression. Yet, the strength of the founder effect partly depends on the genetic variation of the parental population. WCM is an economically important pest with a great invasive potential, but its dispersal and colonisation mechanisms were poorly studied before. Therefore, here we assessed WCM dispersal and colonisation potential in relation to the genetic variation of the parental population. We checked whether this potential may be linked to specific pre-dispersal actions (e.g. mating before dispersal and collective behaviour). Our study confirms that dispersal strategies of WCM are not dependent on heterozygosity in the parental population, and the efficient dispersal of this species depends on collective movement of fertilised females.

8.
Proc Biol Sci ; 288(1958): 20211604, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465242

RESUMO

In seasonal environments, sinks that are more persistent than sources may serve as temporal stepping stones for specialists. However, this possibility has to our knowledge, not been demonstrated to date, as such environments are thought to select for generalists, and the role of sinks, both in the field and in the laboratory, is difficult to document. Here, we used laboratory experiments to show that herbivorous arthropods associated with seasonally absent main (source) habitats can endure on a suboptimal (sink) host for several generations, albeit with a negative growth rate. Additionally, they dispersed towards this host less often than towards the main host and accepted it less often than the main host. Finally, repeated experimental evolution attempts revealed no adaptation to the suboptimal host. Nevertheless, field observations showed that arthropods are found in suboptimal habitats when the main habitat is unavailable. Together, these results show that evolutionary rescue in the suboptimal habitat is not possible. Instead, the sink habitat functions as a temporal stepping stone, allowing for the persistence of a specialist when the source habitat is gone.


Assuntos
Ecossistema , Herbivoria , Adaptação Fisiológica , Estações do Ano
9.
Metabolites ; 11(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34436431

RESUMO

Promoting the consumption of fruits is a key objective of nutrition policy campaigns due to their associated health benefits. Raspberries are well appreciated for their remarkable flavor and nutritional value attributable to their antioxidant properties. Consequently, one of the objectives of present-day raspberry breeding programs is to improve the fruit's sensory and nutritive characteristics. However, developing new genotypes with enhanced quality traits is a complex task due to the intricate impacts genetic and environmental factors have on these attributes, and the difficulty to phenotype them. We used a multi-platform metabolomic approach to compare flavor- and nutritional-related metabolite profiles of four raspberry cultivars ('Glen Ample', 'Schönemann', 'Tulameen' and 'Veten') grown in different European climates. Although the cultivars appear to be better adapted to high latitudes, for their content in soluble solids and acidity, multivariate statistical analyses allowed us to underscore important genotypic differences based on the profiles of important metabolites. 'Schönemann' and 'Veten' were characterized by high levels of anthocyanins and ellagitannins, respectively, 'Tulameen' by its acidity, and 'Glen Ample' for its content of sucrose and ß-ionone, two main flavor contributors. Our results confirmed the value of metabolomic-driven approaches, which may foster the development of cultivars with enhanced health properties and flavor.

10.
Infect Genet Evol ; 95: 105051, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450295

RESUMO

There are few plant maladies as devastating as rose rosette, a disease caused by an eriophyoid -transmitted virus. Rosette annihilates roses across North America, and to date, there is a single verified vector of the virus, Phyllocoptes fructiphilus Keifer. In direct contrast to the importance of rose for the ornamental industry there is limited knowledge on the eriophyoids that inhabit roses in North America and even less information on their vectoring capacities. This study dissects the genetic diversity of the eriophyoid fauna in rosette-affected hotspots and provides evidence of the existence of an undescribed species named Phyllocoptes arcani sp. nov., that could potentially be a second vector of the rosette virus.


Assuntos
Vetores Aracnídeos/classificação , Cadeia Alimentar , Ácaros/classificação , Filogenia , Rosa , Distribuição Animal , Animais , Vetores Aracnídeos/genética , Feminino , Masculino , Ácaros/genética , Ácaros/crescimento & desenvolvimento , Ninfa/classificação , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Rosa/crescimento & desenvolvimento , Rosa/virologia
11.
Hortic Res ; 7(1): 189, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328447

RESUMO

Breeding of apple is a long-term and costly process due to the time and space requirements for screening selection candidates. Genomics-assisted breeding utilizes genomic and phenotypic information to increase the selection efficiency in breeding programs, and measurements of phenotypes in different environments can facilitate the application of the approach under various climatic conditions. Here we present an apple reference population: the apple REFPOP, a large collection formed of 534 genotypes planted in six European countries, as a unique tool to accelerate apple breeding. The population consisted of 269 accessions and 265 progeny from 27 parental combinations, representing the diversity in cultivated apple and current European breeding material, respectively. A high-density genome-wide dataset of 303,239 SNPs was produced as a combined output of two SNP arrays of different densities using marker imputation with an imputation accuracy of 0.95. Based on the genotypic data, linkage disequilibrium was low and population structure was weak. Two well-studied phenological traits of horticultural importance were measured. We found marker-trait associations in several previously identified genomic regions and maximum predictive abilities of 0.57 and 0.75 for floral emergence and harvest date, respectively. With decreasing SNP density, the detection of significant marker-trait associations varied depending on trait architecture. Regardless of the trait, 10,000 SNPs sufficed to maximize genomic prediction ability. We confirm the suitability of the apple REFPOP design for genomics-assisted breeding, especially for breeding programs using related germplasm, and emphasize the advantages of a coordinated and multinational effort for customizing apple breeding methods in the genomics era.

12.
Plant Cell Rep ; 39(12): 1719-1741, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32955612

RESUMO

KEY MESSAGE: Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.


Assuntos
Hordeum/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Ácaros/patogenicidade , Folhas de Planta/metabolismo , Tylenchoidea/patogenicidade , Animais , Cloroplastos/parasitologia , Cloroplastos/ultraestrutura , Enzimas/metabolismo , Hordeum/fisiologia , Fenóis/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/parasitologia , Proteínas de Plantas/metabolismo , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo
13.
Exp Appl Acarol ; 82(1): 17-31, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32812209

RESUMO

Dispersal is a fundamental biological process that operates at different temporal and spatial scales with consequences for individual fitness, population dynamics, population genetics, and species distributions. Studying this process is particularly challenging when the focus is on microscopic organisms that disperse passively, whilst controlling neither the transience nor the settlement phase of their movement. In this work we propose a comprehensive approach for studying passive dispersal of microscopic invertebrates and demonstrate it using wind and phoretic vectors. The protocol includes the construction of versatile, modifiable dispersal tunnels as well as a theoretical framework quantifying the movement of species via wind or vectors, and a hierarchical Bayesian approach appropriate to the structure of the dispersal data. The tunnels were used to investigate the three stages of dispersal (viz., departure, transience, and settlement) of two species of minute, phytophagous eriophyid mites Aceria tosichella and Abacarus hystrix. The proposed devices are inexpensive and easy to construct from readily sourced materials. Possible modifications enable studies of a wide range of mite species and facilitate manipulation of dispersal factors, thus opening a new important area of ecological study for many heretofore understudied species.


Assuntos
Distribuição Animal , Ácaros , Vento , Animais , Teorema de Bayes
14.
Exp Appl Acarol ; 78(2): 247-261, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31129764

RESUMO

Eriophyoids affect crops around the globe directly or indirectly as virus vectors. Eriophyoid systematics initiated over a century ago, yet more than 90% of their fauna remain undescribed. Morphological identification is challenging because of a limited number of traits, cryptic speciation and complex life cycle reported for many species in the group. Nucleic acids extraction for mite identification is challenging due to their microscopic size with researchers using pooled samples leading to polymorphisms and inconclusive results. Identification of mite virus vectors is a tiresome task that could be simplified with a protocol that allows for the detection of viruses in the individual specimen. This communication describes an innovative, highly efficient extraction and detection pipeline. Direct Reverse Transcriptase - Polymerase Chain Reaction (Drt-PCR) assays were implemented in the molecular identification of eriophyoids and detection of viruses present in their bodies. The reverse transcription step allows for amplification from a single mite or egg, as in addition to the genomic DNA, it incorporates the abundant transcripts of targeted genes, whereas it also allows for the amplification of viruses. This communication provides an efficient, sensitive and cost-effective alternative that can be implemented in pest identification and detection as well as biological and ecological studies.


Assuntos
Arbovírus/isolamento & purificação , Vetores Artrópodes/classificação , Vetores Artrópodes/virologia , Classificação/métodos , Ácaros/classificação , Ácaros/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Animais , Vetores Artrópodes/anatomia & histologia , Feminino , Ácaros/anatomia & histologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade
15.
Sci Rep ; 9(1): 20327, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889108

RESUMO

Experimental approaches to studying life-history traits in minute herbivorous arthropods are hampered by the need to work with detached host plant material and the difficulty of maintaining that material in a suitable condition to support the animal throughout the duration of the test. In order to address this shortcoming, we developed a customizable agar-based medium modified from an established plant cell-culture medium to nourish detached leaves laid atop it while also preventing arthropods from escaping the experimental arena. The artificial culture medium was tested with two herbivorous mite species: the wheat curl mite (Aceria tosichella; Eriophyidae) and two-spotted spider mite (Tetranychus urticae; Tetranychidae). The proposed approach was a major improvement over a standard protocol for prolonged studies of individual eriophyid mites and also provided some benefits for experiments with spider mites. Moreover, the described method can be easily modified according to the requirements of host plant species and applied to a wide range of microherbivore species. Such applications include investigations of life-history traits and other ecological and evolutionary questions, e.g. mating or competitive behaviours or interspecific interactions, assessing invasiveness potential and predicting possible outbreaks. The approach presented here should have a significant impact on the advancement of evolutionary and ecological research on microscopic herbivores.


Assuntos
Artrópodes/fisiologia , Herbivoria , Interações Hospedeiro-Parasita , Características de História de Vida , Animais , Evolução Biológica , Ácaros , Análise de Sobrevida , Triticum
16.
BMC Evol Biol ; 18(1): 122, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30086701

RESUMO

BACKGROUND: Understanding the mechanisms that underlie the diversification of herbivores through interactions with their hosts is important for their diversity assessment and identification of expansion events, particularly in a human-altered world where evolutionary processes can be exacerbated. We studied patterns of host usage and genetic structure in the wheat curl mite complex (WCM), Aceria tosichella, a major pest of the world's grain industry, to identify the factors behind its extensive diversification. RESULTS: We expanded on previous phylogenetic research, demonstrating deep lineage diversification within the taxon, a complex of distinctive host specialist and generalist lineages more diverse than previously assumed. Time-calibrated phylogenetic reconstruction inferred from mitochondrial DNA sequence data suggests that lineage diversification pre-dates the influence of agricultural practices, and lineages started to radiate in the mid Miocene when major radiations of C4 grasses is known to have occurred. Furthermore, we demonstrated that host specificity is not phylogenetically constrained, while host generalization appears to be a more derived trait coinciding with the expansion of the world's grasslands. Demographic history of specialist lineages have been more stable when compared to generalists, and their expansion pre-dated all generalist lineages. The lack of host-associated genetic structure of generalists indicates gene flow between mite populations from different hosts. CONCLUSIONS: Our analyses demonstrated that WCM is an unexpectedly diverse complex of genetic lineages and its differentiation is likely associated with the time of diversification and expansion of its hosts. Signatures of demographic histories and expansion of generalists are consistent with the observed proliferation of the globally most common lineages. The apparent lack of constrains on host use, coupled with a high colonization potential, hinders mite management, which may be further compromised by host range expansion. This study provides a significant contribution to the growing literature on host-association and diversification in herbivorous invertebrates.


Assuntos
Interações Hospedeiro-Patógeno/genética , Ácaros/classificação , Ácaros/genética , Filogenia , Doenças das Plantas/parasitologia , Triticum/parasitologia , Animais , Sequência de Bases , Teorema de Bayes , Calibragem , DNA Mitocondrial/genética , Demografia , Fluxo Gênico , Variação Genética , Mitocôndrias/genética , Fatores de Tempo
17.
Sci Rep ; 7(1): 3890, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634374

RESUMO

Passively dispersing organisms should optimise the time and direction of dispersal by employing behaviours that increase their probability of being successfully transported by dispersal agents. We rigorously tested whether two agriculturally important passively-dispersing eriophyoid species, wheat curl mite (WCM) and cereal rust mite (CRM), display behaviours indicating their readiness to depart from current host plants in the presence of potential dispersal cues: wind, an insect vector and presence of a fresh plant. Contrary to our expectations, we found that both species decreased their general activity in the presence of wind. When exposed to wind, WCM (but not CRM) significantly increased behaviour that has previously been considered to facilitate dispersal (in this case, standing vertically). Our study provides the first sound test of the function of what have been interpreted as dispersal-related behaviours of eriophyid mites. The low proportion of WCM exhibiting dispersal behaviour suggests there may be predisposed dispersers and residents in the population. Moreover, we found that WCM was generally more active than CRM, which is likely a contributing factor to its high invasive potential.


Assuntos
Comportamento Animal , Sinais (Psicologia) , Grão Comestível , Ácaros/fisiologia , Animais , Ácaros/ultraestrutura
18.
PLoS One ; 12(1): e0169874, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28099506

RESUMO

The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide that also comprises a complex of at least 16 genetic lineages with divergent physiological traits, including host associations and specificity. The goal of this study was to test the extent to which host-plant species and landscape spatial variation influence WCM presence and population density across the entire area of Poland (>311,000 km2). Three important findings arose from the results of the study. (1) The majority of WCM lineages analyzed exhibited variation in patterns of prevalence and/or population density on both spatial and host-associated scales. (2) Areas of occurrence and local abundance were delineated for specific WCM lineages and it was determined that the most pestiferous lineages are much less widespread than was expected, suggesting relatively recent introductions into Poland and the potential for further spread. (3) The 16 WCM lineages under study assorted within four discrete host assemblages, within which similar host preferences and host infestation patterns were detected. Of these four groups, one consists of lineages associated with cereals. In addition to improving basic ecological knowledge of a widespread arthropod herbivore, the results of this research identify high-risk areas for the presence of the most pestiferous WCM lineages in the study area (viz. the entirety of Poland). They also provide insight into the evolution of pest species of domesticated crops and facilitate testing of fundamental hypotheses about the ecological factors that shape this pest community.


Assuntos
Acaridae/genética , Interações Hospedeiro-Parasita , Acaridae/fisiologia , Agricultura , Animais , Ecossistema , Grão Comestível/parasitologia , Genótipo , Interações Hospedeiro-Parasita/genética , Polônia , Densidade Demográfica , Prevalência , Triticum/parasitologia
19.
PLoS One ; 11(11): e0166641, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27835702

RESUMO

Latitudinal patterns in herbivory, i.e. variations in plant losses to animals with latitude, are generally explained by temperature gradients. However, earlier studies suggest that geographical variation in abundance and diversity of gall-makers may be driven by precipitation rather than by temperature. To test the above hypothesis, we examined communities of eriophyoid mites (Acari: Eriophyoidea) on leaves of Betula pendula and B. pubescens in boreal forests in Northern Europe. We sampled ten sites for each of five latitudinal gradients from 2008-2011, counted galls of six morphological types and identified mites extracted from these galls. DNA analysis revealed cryptic species within two of six morphologically defined mite species, and these cryptic species induced different types of galls. When data from all types of galls and from two birch species were pooled, the percentage of galled leaves did not change with latitude. However, we discovered pronounced variation in latitudinal changes between birch species. Infestation by eriophyoid mites increased towards the north in B. pendula and decreased in B. pubescens, while diversity of galls decreased towards the north in B. pendula and did not change in B. pubescens. The percentage of galled leaves did not differ among geographical gradients and study years, but was 20% lower in late summer relative to early summer, indicating premature abscission of infested leaves. Our data suggest that precipitation has little effect on abundance and diversity of eriophyoid mites, and that climate warming may impose opposite effects on infestation of two birch species by galling mites, favouring B. pendula near the northern tree limit.


Assuntos
Betula/parasitologia , Infestações por Ácaros/parasitologia , Ácaros/fisiologia , Tumores de Planta/parasitologia , Distribuição Animal/fisiologia , Animais , Betula/classificação , Europa (Continente) , Herbivoria/fisiologia , Dispersão Vegetal/fisiologia , Folhas de Planta/parasitologia , Temperatura , Árvores
20.
Zootaxa ; 4066(3): 323-30, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27395555

RESUMO

A new species of eriophyoid mite from a hybrid of Rosa sp. (Rosaceae) found in Israel is described and illustrated. Eriophyes eremus n. sp. is a refuge-seeking type mite, inhabiting flower buds and petiole bases, causing no apparent damage to the host plant. Eighteen eriophyoid species are known to inhabit Rosa sp. and those are listed here along with type localities, damage they cause and host plant details.


Assuntos
Ácaros/classificação , Doenças das Plantas/parasitologia , Rosa/parasitologia , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Feminino , Israel , Masculino , Ácaros/anatomia & histologia , Ácaros/crescimento & desenvolvimento , Ácaros/fisiologia , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA