Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(7): 3504-3519, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723023

RESUMO

We have studied the clusters involved in the initial stages of nucleation of Zeolitic Imidazolate Frameworks, employing a wide range of computational techniques. In the pre-nucleating solution, the prevalent cluster is the ZnIm4 cluster (formed by a zinc cation, Zn2+, and four imidazolate anions, Im-), although clusters such as ZnIm3, Zn2Im7, Zn2Im7, Zn3Im9, Zn3Im10, or Zn4Im12 have energies that are not much higher, so they would also be present in solution at appreciable quantities. All these species, except ZnIm3, have a tetrahedrally coordinated Zn2+ cation. Small ZnxImy clusters are less stable than the ZnIm4 cluster. The first cluster that is found to be more stable than ZnIm4 is the Zn41Im88 cluster, which is a disordered cluster with glassy structure. Bulk-like clusters do not begin to be more stable than glassy clusters until much larger sizes, since the larger cluster we have studied (Zn144Im288) is still less stable than the glassy Zn41Im88 cluster, suggesting that Ostwald's rule (the less stable polymorph crystallizes first) could be fulfilled, not for kinetic, but for thermodynamic reasons. Our results suggest that the first clusters formed in the nucleation process would be glassy clusters, which then undergo transformation to any of the various crystal structures possible, depending on the kinetic routes provided by the synthesis conditions. Our study helps elucidate the way in which the various species present in solution interact, leading to nucleation and crystal growth.

2.
Phys Chem Chem Phys ; 20(26): 18047-18055, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29932198

RESUMO

We introduce a method to allow the screening of large configurational spaces of heteroatom distributions in zeotype materials. Based on interatomic potential calculations of configurations containing up to two heteroatoms per cell, we parameterize an atomistic effective Hamiltonian to describe the energy of multiple substitutions, with consideration of both short- and long-range interactions. Then, the effective Hamiltonian is used to explore the full configurational space at other compositions, allowing the identification of the most stable structures for further analysis. We illustrate our approach with the aluminogermanate PKU-9, where we show that increasing the aluminium concentration changes the likely siting of Al, in agreement with experiment.

3.
J Phys Chem B ; 119(2): 563-71, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25525821

RESUMO

We devised a strategy, using a de novo building approach, to construct model molecularly imprinted polymers (MIPs) and assess their ability at binding various target molecules. While our models successfully reproduce the gross experimental selectivities for two xanthines, our atomistic models reveal in detail the considerable heterogeneity of the structure and binding mechanisms of different imprints within such a material. We also demonstrate how nonimprinted regions of a MIP are also responsible for much of binding of target molecules. High levels of cross-linking are shown to produce less specific imprints.

4.
J Phys Chem A ; 116(34): 8786-91, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22891950

RESUMO

A DFT methodology for calculating (29)Si NMR chemical shifts of silicate species typically present prior to nucleation in zeolite synthesis solutions, incorporating solvent effects through an implicit representation is presented. We demonstrate how our methodology can reproduce the experimentally observed spectra and, by comparison to well characterized peaks in two different experimental studies, demonstrate the transferability and robustness of the methodology. We discuss certain cases in which caution must be exercised when implicit solvent representations are used for calculating silicate cluster geometries: those cases in which intramolecular hydrogen bonding can play a significant role in the geometry. A number of reassignments of previous tentative experimental assignments are proposed, and we also make assignments for the challenging substituted four-ring species. We present all of our computed chemical shift for previously observed species together with a number of other viable silicate clusters to serve as a reference point for future experimental studies.

5.
Phys Chem Chem Phys ; 12(30): 8632-9, 2010 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-20593072

RESUMO

We investigate here a new family of zeolitic Metal Organic Frameworks (MOFs) based on imidazole (im) as the ligand and epsilon-type Keggin PolyOxoMetalates (POMs) as building units. The POM used in this study is the epsilon-{PMo(12)O(40)} Keggin isomer capped by four Zn(ii) ions (noted epsilon-Zn) in tetrahedral coordination. We describe here our methods to first construct and then evaluate the stability of hypothetical 3-D POMOFs possessing a tetrahedral network, typified by dense silica polymorphs and zeotypes and referred here to as Z-POMOFs. We use the analogy between the connectivity of silicon ion in dense minerals or zeolites and the epsilon-Zn, using imidazolate ligands to mimic the role of oxygen atoms in zeolites. Handling the epsilon-Keggin and imidazole as the constitutive building-blocks, a selection of 40 polymorphs were constructed and their relative stabilities computed. Among these Z-POMOFs, the cristobalite-like and zni-structure were identified as the most stable candidates. In parallel, we have attempted to synthesize Z-POMOF structures with epsilon-Zn POMs, synthesized in situ under hydrothermal conditions, and imidazole ligands. We present our first experimental result, the extended material [NBu(4)][PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)(im)(Him)], named epsilon(im)(2). The structure of the hybrid framework is built by the connection of dimerized epsilon-Zn POMs to imidazole ligands in two directions. The obtaining of the first POMOF based on imidazole ligand is an encouraging step towards the synthesis of a new family of POMOFs.

6.
J Am Chem Soc ; 131(44): 16078-87, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19842657

RESUMO

The targeted design and simulation of a new family of zeolitic metal-organic frameworks (MOFs) based on benzenedicarboxylate (BDC) as the ligand and epsilon-type Keggin polyoxometalates (POMs) as building units, named here Z-POMOFs, have been performed. A key feature is the use of the analogy between the connectivity of silicon in dense minerals and zeolites with that of the epsilon-type Keggin POMs capped with Zn(II) ions. Handling the epsilon-Keggin as a building block, a selection of 21 zeotype structures, together with a series of dense minerals were constructed and their relative stabilities computed. Among these Z-POMOFs, the cristobalite-like structure was predicted to be the most stable structure. This prediction has been experimentally validated by the targeted synthesis of the first experimental Z-POMOF structure, which was strikingly found to possess the cristobalite topology, with three interpenetrated networks. Crystals of [NBu(4)](3)[PMo(V)(8)Mo(VI)(4)O(36)(OH)(4)Zn(4)(BDC)(2)].2H(2)O (Z-POMOF1) have been isolated under hydrothermal conditions from the reduction of ammonium heptamolybdate in the presence of phosphorous acid and Zn(II) ions. Tetrabutylammonium cations play the role of counterions and space-filling agents in this tridimensional interpenetrated framework. Moreover, the electrochemistry of the epsilon-Keggin POM is maintained and can be exploited in the insoluble Z-POMOF1 framework, as demonstrated by the electrocatalytic reduction of bromate.

7.
Phys Chem Chem Phys ; 10(43): 6571-8, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18979042

RESUMO

The relative strength of water-water, water-silicate and silicate-silicate interactions are studied, in order to explain the low solubility of the monomer (Si(OH)(4)), and determine the degree of dispersion of silicate clusters in solution during the hydrothermal synthesis of zeolites. We will show how the hydrogen bond interactions between water and monomeric silicate species are similar to that in pure water, whilst monomer-monomer interactions are stronger. However, when larger silicate species are also considered we find the relative hydrogen-bonding strength to follow: water-water < silicate-water < silicate-silicate. The effects of pH are also considered. The implications of the relative strength of these interactions on the formation of larger silicate species, leading to zeolite pre-nucleation, are discussed.

8.
Phys Chem Chem Phys ; 9(4): 521-32, 2007 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-17216068

RESUMO

Computational methods are described that model accurately the structure of hydrated Ca-bearing zeolites. Using Goosecreekite as a model system we probe the influence of framework ordering, cation siting and hydration of pores on the structure and its stability. We develop a methodology which allows the location of Al within the framework to be determined together with the position of extra-framework cations, in a stepwise fashion, progressing from an anhydrous model, via a dielectric continuum model, to finally, a fully atomistic model of the water in the intrazeolite pore space. Our methods reveal the complex interplay of short- and long-range interactions on the optimal structure of such materials.


Assuntos
Modelos Químicos , Modelos Moleculares , Dióxido de Silício/química , Água/química , Zeolitas/química , Cátions , Simulação por Computador , Difusão , Conformação Molecular , Porosidade , Propriedades de Superfície
9.
Angew Chem Int Ed Engl ; 44(40): 6456-82, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16211650

RESUMO

Intellectually, the advantages that flow from the availability of single-site heterogeneous catalysts (SSHC) are many. They facilitate the determination of the kinetics and mechanism of catalytic turnover-both experimentally and computationally-and make accessible the energetics of various intermediates (including short-lived transition states). These facts in turn offer a rational strategic principle for the design of new catalysts and the improvement of existing ones. It is generally possible to prepare soluble molecular fragments that circumscribe the single-site, thus enabling a direct comparison to be made, experimentally, between the catalytic performance of the same active site when functioning as a heterogeneous (continuous solid) as well as a homogeneous (dispersed molecular) catalyst. This approach also makes it possible to modify the immediate atomic environment as well as the central atomic structure of the active site. From the practical standpoint, SSHC exhibit very high selectivities leading to the production of sharply defined molecular products, just as do their homogeneous analogues. Given that mesoporous silicas with very large internal surface areas are ideal supports for SSHC, and that more than a quarter of the elements of the Periodic Table may be grafted as active sites onto such silicas, there is abundant scope for creating new catalytic opportunities.

13.
Chem Commun (Camb) ; (22): 2660-1, 2002 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12510286

RESUMO

Simultaneous occupation of adjacent SI (or SIa) and SI' sites is calculated to be favourable in dehydrated zeolite K-LSX (supporting the experimental work of Paillaud et al.), although such a configuration is unlikely in other dehydrated LSX zeolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA