Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Nutr ; 10: 1155533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360297

RESUMO

Nutrition is now well recognized to be an environmental factor which positively or negatively influences the risk to develop neurological and psychiatric disorders. The gut microbiota has recently been shown to be an important actor mediating the relationship between environmental factors, including nutrition, and brain function. While its composition has been widely studied and associated with the risk of brain diseases, the mechanisms underlying the relationship between the gut and brain diseases remain to be explored. The wide range of bioactive molecules produced by the gut microbiota, called gut-derived metabolites (GDM), represent new players in the gut to brain interactions and become interesting target to promote brain health. The aim of this narrative review is to highlight some GDMs of interest that are produced in response to healthy food consumption and to summarize what is known about their potential effects on brain function. Overall, GDMs represent future useful biomarkers for the development of personalized nutrition. Indeed, their quantification after nutritional interventions is a useful tool to determine individuals' ability to produce microbiota-derived bioactive compounds upon consumption of specific food or nutrients. Moreover, GDMs represent also a new therapeutic approach to counteract the lack of response to conventional nutritional interventions.

2.
J Neural Transm (Vienna) ; 130(3): 473-479, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719463

RESUMO

On June 2022, the 2nd Webinar "Neurodevelopmental Disorders (NDD) without boundaries took place at the Imagine Institute in Paris and was broadcasted live and in replay. The aim of this webinar is to address NDD in a dimensional rather than in a categorical approach. Several speakers were invited to present their researches on the subject. Classifications in NDD were discussed: irritability in NDD, involvement of the immune system in neurodevelopment, nutrition and gut microbiota modulate brain inflammation and neurodevelopment, co-occurring conditions in autistic adolescents and adults without intellectual disability. Classifications in psychiatric disorders were asked: mapping the effect of genes on cognition and autism risk, epigenetics and symptomatic trajectory in neurodevelopmental disorders, the autism-schizophrenia continuum in two examples: minor neurological signs and EEG microstates, the cerebellum in schizophrenia and autism: from imaging to intervention perspectives. Both genetic and environmental factors, along with clinical and imaging features, argue toward a continnum between NDD but also with adult psychiatric presentations. This new paradigm could modify the therapeutic strategy, with the development of large-spectrum treatments or new psychotherapies addressing co-occuring symptoms. The complexity and the heterogeneity of NDD apply well to the next scientific and political challenges: developing international convergence to push back the frontiers of our knowledge. This article is a summary of the 2nd webinar "Neurodevelopmental Disorders (NDD) without boundaries: research and interventions beyond classifications" sponsored by the French National Academy of Medicine, the autism and neurodevelopmental disorders scientific interest group (GIS), the International Research Network Dev-O-Psy and the French Institute of Psychiatry (GDR3557). Oral presentations are available as a replay on the following website (in French): https://autisme-neurodev.org/evenements/2022/04/12/tnd-sans-frontieres-la-recherche-et-les-interventions-au-dela-des-classifications/ .


Assuntos
Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Adolescente , Humanos , Transtornos do Neurodesenvolvimento/terapia , Deficiência Intelectual/genética , Psicoterapia
3.
Foods ; 12(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38231613

RESUMO

Aging is characterized by a decline in social behavior and cognitive functions leading to a decrease in life quality. In a previous study, we show that a fish hydrolysate supplementation prevents age-related decline in spatial short-term memory and long-term memory and anxiety-like behavior and improves the stress response in aged mice. The aim of this study was to determine the effects of a fish hydrolysate enriched with EPA/DHA or not on the cognitive ability and social interaction during aging and the biological mechanisms involved. We showed for the first time that a fish hydrolysate enriched with EPA/DHA or not improved memory performance and preference for social novelty that were diminished by aging. These changes were associated with the modulation of the gut microbiota, normalization of corticosterone, and modulation of the expression of genes involved in the mitochondrial respiratory chain, circadian clock, neuroprotection, and antioxidant activity. Thus, these changes may contribute to the observed improvements in social behavior and memory and reinforced the innovative character of fish hydrolysate in the prevention of age-related impairments.

4.
Gut Microbes ; 14(1): 2102878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903003

RESUMO

Alterations in the gut microbiota composition have been associated with a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The gut microbes transform and metabolize dietary- and host-derived molecules generating a diverse group of metabolites with local and systemic effects. The bi-directional communication between brain and the microbes residing in the gut, the so-called gut-brain axis, consists of a network of immunological, neuronal, and endocrine signaling pathways. Although the full variety of mechanisms of the gut-brain crosstalk is yet to be established, the existing data demonstrates that a single metabolite or its derivatives are likely among the key inductors within the gut-brain axis communication. However, more research is needed to understand the molecular mechanisms underlying how gut microbiota associated metabolites alter brain functions, and to examine if different interventional approaches targeting the gut microbiota could be used in prevention and treatment of neurological disorders, as reviewed herein.Abbreviations:4-EPS 4-ethylphenylsulfate; 5-AVA(B) 5-aminovaleric acid (betaine); Aß Amyloid beta protein; AhR Aryl hydrocarbon receptor; ASD Autism spectrum disorder; BBB Blood-brain barrier; BDNF Brain-derived neurotrophic factor; CNS Central nervous system; GABA É£-aminobutyric acid; GF Germ-free; MIA Maternal immune activation; SCFA Short-chain fatty acid; 3M-4-TMAB 3-methyl-4-(trimethylammonio)butanoate; 4-TMAP 4-(trimethylammonio)pentanoate; TMA(O) Trimethylamine(-N-oxide); TUDCA Tauroursodeoxycholic acid; ZO Zonula occludens proteins.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Peptídeos beta-Amiloides/metabolismo , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos
5.
Glia ; 70(1): 50-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519378

RESUMO

Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Encéfalo , Camundongos , Bainha de Mielina , Neurogênese , Oligodendroglia
6.
Gut Microbes ; 14(1): 2007042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923905

RESUMO

Alcohol use disorder (AUD) is a chronic relapsing disease associated with malnutrition, metabolic disturbances, and gut microbiota alterations that are correlated with the severity of psychological symptoms. This study aims at supplementing AUD patients with prebiotic fiber during alcohol withdrawal, in order to modulate the gut microbiota composition and to evaluate its effect on gastrointestinal tolerance, metabolism, and patient's behavior. A randomized, double-blind, placebo-controlled study included 50 AUD patients assigned to inulin versus maltodextrin daily supplementation for 17 days. Biological measurements (fecal microbial 16S rDNA sequencing, serum biology), dietary intake, validated psychological questionnaires, and gastrointestinal tolerance assessment were performed before and after the intervention. Inulin significantly decreased the richness and evenness and induced changes of 8 genera (q < 0.1) including Bifidobacterium and Bacteroides. Prebiotic had minor effects on gastrointestinal symptoms and nutritional intakes compared to placebo. All patients showed an improvement in depression, anxiety, and craving scores during alcohol withdrawal regardless of the intervention group. Interestingly, only patients treated with inulin significantly improved the sociability score and had an increased serum level of brain-derived neurotrophic factor. This pilot study shows that inulin is well tolerated and modulates the gut microbiota and the social behavior in AUD patients, without further improving other psychological and biological parameters as compared to placebo. Gut2Brain study, clinicaltrial.gov: NCT03803709, https://clinicaltrials.gov/ct2/show/NCT03803709.


Assuntos
Alcoolismo/dietoterapia , Alcoolismo/psicologia , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal , Inulina/metabolismo , Adolescente , Adulto , Idoso , Alcoolismo/metabolismo , Alcoolismo/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Método Duplo-Cego , Fezes/microbiologia , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prebióticos/administração & dosagem , Habilidades Sociais , Adulto Jovem
7.
Cannabis Cannabinoid Res ; 6(6): 488-507, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591647

RESUMO

Background: Neuroinflammation is a key feature shared by most, if not all, neuropathologies. It involves complex biological processes that act as a protective mechanism to fight against the injurious stimuli, but it can lead to tissue damage if self-perpetuating. In this context, microglia, the main cellular actor of neuroinflammation in the brain, are seen as a double-edged sword. By phagocyting neuronal debris, these cells can not only provide tissue repair but can also contribute to neuronal damage by releasing harmful substances, including inflammatory cytokines. The mechanisms guiding these apparent opposing actions are poorly known. The endocannabinoid system modulates the release of inflammatory factors such as cytokines and could represent a functional link between microglia and neuroinflammatory processes. According to transcriptomic databases and in vitro studies, microglia, the main source of cytokines in pathological conditions, express the cannabinoid type 1 receptor (CB1R). Methods: We thus developed a conditional mouse model of CB1R deletion specifically in microglia, which was subjected to an immune challenge (peripheral lipopolysaccharide injection). Results: Our results reveal that microglial CB1R differentially controls sickness behavior in males and females. Conclusion: These findings add to the comprehension of neuroinflammatory processes and might be of great interest for future studies aimed at developing therapeutic strategies for brain disorders with higher prevalence in men.


Assuntos
Canabinoides , Encefalite , Animais , Masculino , Camundongos , Microglia , Doenças Neuroinflamatórias , Receptores de Canabinoides/genética
8.
J Nutr ; 151(6): 1507-1516, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693866

RESUMO

BACKGROUND: The gut microbiota plays a role in the occurrence of nonalcoholic fatty liver disease (NAFLD), notably through the production of bioactive metabolites. Indole, a bacterial metabolite of tryptophan, has been proposed as a pivotal metabolite modulating inflammation, metabolism, and behavior. OBJECTIVES: The aim of our study was to mimic an upregulation of intestinal bacterial indole production and to evaluate its potential effect in vivo in 2 models of NAFLD. METHODS: Eight-week-old leptin-deficient male ob/ob compared with control ob/+ mice (experiment 1), and 4-5-wk-old C57BL/6JRj male mice fed a low-fat (LF, 10 kJ%) compared with a high-fat (HF, 60 kJ%) diet (experiment 2), were given plain water or water supplemented with a physiological dose of indole (0.5 mM, n ≥6/group) for 3 wk and 3 d, respectively. The effect of the treatments on the liver, intestine, adipose tissue, brain, and behavior was assessed. RESULTS: Indole reduced hepatic expression of genes involved in inflammation [C-C motif chemokine ligand 2 (Ccl2), C-X-C motif chemokine ligand 2 (Cxcl2); 3.3- compared with 5.0-fold, and 2.4- compared with 3.3-fold of control ob/+ mice, respectively, P < 0.05], and in macrophage activation [Cd68, integrin subunit α X (Itgax); 2.1- compared with 2.5-fold, and 5.0- compared with 6.4-fold of control ob/+ mice, respectively, P < 0.01] as well as markers of hepatic damage (alaninine aminotransferase; -32%, P < 0.001) regardless of genotype in experiment 1. Indole had no effect on hepatic inflammation in mice fed the LF or HF diet in experiment 2. Indole did not change hepatic lipid content, anxiety-like behavior, or inflammation in the ileum, adipose tissue, and brain in experiment 1. CONCLUSIONS: Our results support the efficacy of indole to reduce hepatic damage and associated inflammatory response and macrophage activation in ob/ob mice. These modifications appear to be attributable to direct effects of indole on the liver, rather than through effects on the adipose tissue or intestinal barrier.


Assuntos
Microbioma Gastrointestinal , Indóis , Leptina/deficiência , Hepatopatia Gordurosa não Alcoólica , Animais , Quimiocina CCL2 , Quimiocina CXCL2 , Dieta Hiperlipídica , Indóis/farmacologia , Inflamação , Ligantes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Substâncias Protetoras/farmacologia
9.
Brain Behav Immun ; 94: 289-298, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33515740

RESUMO

BACKGROUND AND AIMS: Metabolic and behavioural diseases, which are often related to obesity, have been associated to alterations of the gut microbiota considered as an interesting therapeutic target. We have analyzed in a cohort of obese patients treated with prebiotic inulin versus placebo the potential link between gut microbiota changes occurring upon intervention and their effect on psychological parameters (mood and cognition). METHODS: A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in 106 obese patients assigned to two groups: prebiotic versus placebo, who received respectively 16 g/d of native inulin or maltodextrin combined with dietary advice to consume inulin-rich or -poor vegetables for 3 months as well as to restrict caloric intake. Anthropometric measurements, food intake, psychological questionnaires, serum measures, and fecal microbiome sequencing were performed before and after the intervention. RESULTS: Inulin supplementation in obese subjects had moderate beneficial effect on emotional competence and cognitive flexibility. However, an exploratory analysis revealed that some patients exhibiting specific microbial signature -elevated Coprococcus levels at baseline- were more prone to benefit from prebiotic supplementation in terms of mood. Positive responders toward inulin intervention in term of mood also displayed worse metabolic and inflammatory profiles at baseline (increased levels of IL-8, insulin resistance and adiposity). CONCLUSION: This study shows that inulin intake can be helpful to improve mood in obese subjects exhibiting a specific microbial profile. The present work highlights some microbial, metabolic and inflammatory features (IL-8, insulin resistance) which can predict or mediate the beneficial effects of inulin on behaviour in obesity. Food4gut, clinicaltrial.gov: NCT03852069, https://clinicaltrials.gov/ct2/show/NCT03852069.


Assuntos
Microbioma Gastrointestinal , Fezes , Humanos , Inulina , Obesidade/complicações , Prebióticos
10.
Nutrients ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011021

RESUMO

Obesity is associated with an increased risk of several neurological and psychiatric diseases, but few studies report the contribution of biological features in the occurrence of mood disorders in obese patients. The aim of the study is to evaluate the potential links between serum metabolomics and gut microbiome, and mood disturbances in a cohort of obese patients. Psychological, biological characteristics and nutritional habits were evaluated in 94 obese subjects from the Food4Gut study stratified according to their mood score assessed by the Positive and Negative Affect Schedule (PANAS). The fecal gut microbiota and plasma non-targeted metabolomics were analysed. Obese subjects with increased negative mood display elevated levels of Coprococcus as well as decreased levels of Sutterella and Lactobacillus. Serum metabolite profile analysis reveals in these subjects altered levels of several amino acid-derived metabolites, such as an increased level of L-histidine and a decreased in phenylacetylglutamine, linked to altered gut microbiota composition and function rather than to differences in dietary amino acid intake. Regarding clinical profile, we did not observe any differences between both groups. Our results reveal new microbiota-derived metabolites that characterize the alterations of mood in obese subjects, thereby allowing to propose new targets to tackle mood disturbances in this context. Food4gut, clinicaltrial.gov: NCT03852069.


Assuntos
Biomarcadores , Microbioma Gastrointestinal , Glutamina/análogos & derivados , Transtornos do Humor/diagnóstico , Transtornos do Humor/microbiologia , Obesidade/complicações , Obesidade/microbiologia , Aminoácidos/metabolismo , Estudos Transversais , Feminino , Microbioma Gastrointestinal/fisiologia , Glutamina/economia , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Masculino , Transtornos do Humor/etiologia , Transtornos do Humor/metabolismo , Obesidade/metabolismo
11.
Clin Nutr ; 40(4): 2035-2044, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33023763

RESUMO

BACKGROUND & AIMS: Binge eating disorder (BED) is a frequent eating disorder associated with obesity and co-morbidities including psychiatric pathologies, which represent a big health burden on the society. The biological processes related to BED remain unknown. Based on psychological testing, anthropometry, clinical biology, gut microbiota analysis and metabolomic assessment, we aimed to examine the complex biological and psychiatric profile of obese patients with and without BED. METHODS: Psychological and biological characteristics (anthropometry, plasma biology, gut microbiota, blood pressure) of 101 obese subjects from the Food4Gut cohort were analysed to decipher the differences between BED and Non BED patients, classified based on the Questionnaire for Eating Disorder Diagnosis (Q-EDD). Microbial 16S rDNA sequencing and plasma non-targeted metabolomics (liquid chromatography-mass spectrometry) were performed in a subcohort of 91 and 39 patients respectively. RESULTS: BED subjects exhibited an impaired affect balance, deficits in inhibition and self-regulation together with marked alterations of eating behaviour (increased emotional and external eating). BED subjects displayed a lower blood pressure and hip circumference. A decrease in Akkermansia and Intestimonas as well as an increase in Bifidobacterium and Anaerostipes characterized BED subjects. Interestingly, metabolomics analysis revealed that BED subjects displayed a higher level of one food contaminants, Bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE.2H(2)O) and a food derived-metabolite the Isovalerylcarnitine. CONCLUSIONS: Non-targeted omics approaches allow to select specific microbial genera and two plasma metabolites that characterize BED obese patients. Further studies are needed to confirm their potential role as drivers or biomarkers of binge eating disorder. Food4gut, clinicaltrial.gov:NCT03852069, https://clinicaltrials.gov/ct2/show/NCT03852069.


Assuntos
Transtorno da Compulsão Alimentar/microbiologia , Transtorno da Compulsão Alimentar/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Obesidade/psicologia , Adolescente , Adulto , Idoso , Antropometria , Bactérias/classificação , Transtorno da Compulsão Alimentar/psicologia , Pressão Sanguínea , Estudos de Coortes , Estudos Transversais , Fezes/microbiologia , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
12.
Cell Rep ; 33(2): 108238, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053357

RESUMO

Patients with alcohol use disorder (AUD) present with important emotional, cognitive, and social impairments. The gut microbiota has been recently shown to regulate brain functions and behavior but convincing evidence of its role in AUD is lacking. Here, we show that gut dysbiosis is associated with metabolic alterations that affect behavioral (depression, sociability) and neurobiological (myelination, neurotransmission, inflammation) processes involved in alcohol addiction. By transplanting the gut microbiota from AUD patients to mice, we point out that the production of ethanol by specific bacterial genera and the reduction of lipolysis are associated with a lower hepatic synthesis of ß-hydroxybutyrate (BHB), which thereby prevents the neuroprotective effect of BHB. We confirm these results in detoxified AUD patients, in which we observe a persisting ethanol production in the feces as well as correlations among low plasma BHB levels and social impairments, depression, or brain white matter alterations.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Alcoolismo/complicações , Alcoolismo/microbiologia , Depressão/complicações , Depressão/microbiologia , Microbioma Gastrointestinal , Comportamento Social , Ácido 3-Hidroxibutírico/sangue , Alcoolismo/sangue , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/fisiopatologia , Depressão/sangue , Dieta Cetogênica , Disbiose/sangue , Disbiose/complicações , Disbiose/microbiologia , Etanol , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Inflamação/sangue , Inflamação/complicações , Intestinos/efeitos dos fármacos , Intestinos/patologia , Lipólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Permeabilidade , Doadores de Tecidos
13.
Clin Nutr ; 39(12): 3618-3628, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32340903

RESUMO

BACKGROUND: The gut microbiota is altered in obesity and is strongly influenced by nutrients and xenobiotics. We have tested the impact of native inulin as prebiotic present in vegetables and added as a supplement on gut microbiota-related outcomes in obese patients. Metformin treatment was analyzed as a potential modulator of the response. METHODS: A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in 150 obese patients who received 16 g/d native inulin versus maltodextrin, coupled to dietary advice to consume inulin-rich versus -poor vegetables for 3 months, respectively, in addition to dietary caloric restriction. Anthropometry, diagnostic imaging (abdominal CT-scan, fibroscan), food-behavior questionnaires, serum biology and fecal microbiome (primary outcome; 16S rDNA sequencing) were analyzed before and after the intervention. RESULTS: Both placebo and prebiotic interventions lowered energy intake, BMI, systolic blood pressure, and serum γ-GT. The prebiotic induced greater weight loss and additionally decreased diastolic blood pressure, AST and insulinemia. Metformin treatment compromised most of the gut microbiota changes and metabolic improvements linked to prebiotic intervention. The prebiotic modulated specific bacteria, associated with the improvement of anthropometry (i.e. a decrease in Desulfovibrio and Clostridium sensu stricto). A large increase in Bifidobacterium appears as a signature of inulin intake rather than a driver of prebiotic-linked biological outcomes. CONCLUSIONS: Inulin-enriched diet is able to promote weight loss in obese patients, the treatment efficiency being related to gut microbiota characteristics. This treatment is more efficacious in patients who did not receive metformin as anti-diabetic drugs prior the intervention, supporting that both drug treatment and microbiota might be taken into account in personalized nutrition interventions. Registered under ClinicalTrials.gov Identifier no NCT03852069.


Assuntos
Restrição Calórica/métodos , Microbioma Gastrointestinal/fisiologia , Inulina/administração & dosagem , Obesidade/dietoterapia , Prebióticos/administração & dosagem , Adolescente , Adulto , Idoso , Antropometria , Pressão Sanguínea , Índice de Massa Corporal , Ingestão de Energia , Fezes/microbiologia , Comportamento Alimentar , Feminino , Humanos , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Obesidade/microbiologia , Polissacarídeos/administração & dosagem , Método Simples-Cego , Resultado do Tratamento , Verduras , Redução de Peso , Adulto Jovem
14.
Gut ; 69(11): 1975-1987, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32041744

RESUMO

OBJECTIVE: The gut microbiota has been proposed as an interesting therapeutic target for metabolic disorders. Inulin as a prebiotic has been shown to lessen obesity and related diseases. The aim of the current study was to investigate whether preintervention gut microbiota characteristics determine the physiological response to inulin. DESIGN: The stools from four obese donors differing by microbial diversity and composition were sampled before the dietary intervention and inoculated to antibiotic-pretreated mice (hum-ob mice; humanised obese mice). Hum-ob mice were fed with a high-fat diet and treated with inulin. Metabolic and microbiota changes on inulin treatment in hum-ob mice were compared with those obtained in a cohort of obese individuals supplemented with inulin for 3 months. RESULTS: We show that hum-ob mice colonised with the faecal microbiota from different obese individuals differentially respond to inulin supplementation on a high-fat diet. Among several bacterial genera, Barnesiella, Bilophila, Butyricimonas, Victivallis, Clostridium XIVa, Akkermansia, Raoultella and Blautia correlated with the observed metabolic outcomes (decrease in adiposity and hepatic steatosis) in hum-ob mice. In addition, in obese individuals, the preintervention levels of Anaerostipes, Akkermansia and Butyricicoccus drive the decrease of body mass index in response to inulin. CONCLUSION: These findings support that characterising the gut microbiota prior to nutritional intervention with prebiotics is important to increase the positive outcome in the context of obesity and metabolic disorders.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/uso terapêutico , Obesidade/microbiologia , Obesidade/terapia , Prebióticos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Método Simples-Cego
15.
Neural Plast ; 2016: 3597209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27840741

RESUMO

Several genetic causes of autism spectrum disorder (ASD) have been identified. However, more recent work has highlighted that certain environmental exposures early in life may also account for some cases of autism. Environmental insults during pregnancy, such as infection or malnutrition, seem to dramatically impact brain development. Maternal viral or bacterial infections have been characterized as disruptors of brain shaping, even if their underlying mechanisms are not yet fully understood. Poor nutritional diversity, as well as nutrient deficiency, is strongly associated with neurodevelopmental disorders in children. For instance, imbalanced levels of essential fatty acids, and especially polyunsaturated fatty acids (PUFAs), are observed in patients with ASD and other neurodevelopmental disorders (e.g., attention deficit hyperactivity disorder (ADHD) and schizophrenia). Interestingly, PUFAs, and specifically n-3 PUFAs, are powerful immunomodulators that exert anti-inflammatory properties. These prenatal dietary and immunologic factors not only impact the fetal brain, but also affect the microbiota. Recent work suggests that the microbiota could be the missing link between environmental insults in prenatal life and future neurodevelopmental disorders. As both nutrition and inflammation can massively affect the microbiota, we discuss here how understanding the crosstalk between these three actors could provide a promising framework to better elucidate ASD etiology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Microbiota/fisiologia , Animais , Transtornos Globais do Desenvolvimento Infantil/complicações , Humanos , Estado Nutricional/fisiologia
18.
PLoS Biol ; 14(5): e1002466, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27228556

RESUMO

Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.


Assuntos
Trifosfato de Adenosina/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Microglia/patologia , Neurônios/metabolismo , Fagocitose/fisiologia , Adulto , Animais , Apoptose/fisiologia , Receptor 1 de Quimiocina CX3C , Humanos , Ácido Caínico/toxicidade , Antígenos Comuns de Leucócito/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/patologia , Neurônios/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA