Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 157, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246220

RESUMO

BACKGROUND: Acinetobacter baumannii is one of the main causes of healthcare-associated infections that threaten public health, and carbapenems, such as meropenem, have been a therapeutic option for these infections. Therapeutic failure is mainly due to the antimicrobial resistance of A. baumannii, as well as the presence of persister cells. Persisters constitute a fraction of the bacterial population that present a transient phenotype capable of tolerating supra-lethal concentrations of antibiotics. Some proteins have been suggested to be involved in the onset and/or maintenance of this phenotype. Thus, we investigated the mRNA levels of the adeB (AdeABC efflux pump component), ompA, and ompW (outer membrane proteins) in A. baumannii cells before and after exposure to meropenem. RESULTS: We found a significant increase (p-value < 0.05) in the expression of ompA (> 5.5-fold) and ompW (> 10.5-fold) in persisters. However, adeB did not show significantly different expression levels when comparing treated and untreated cells. Therefore, we suggest that these outer membrane proteins, especially OmpW, could be part of the mechanism of A. baumannii persisters to deal with the presence of high doses of meropenem. We also observed in the Galleria mellonella larvae model that persister cells are more virulent than regular ones, as evidenced by their LD50 values. CONCLUSIONS: Taken together, these data contribute to the understanding of the phenotypic features of A. baumannii persisters and their relation to virulence, as well as highlight OmpW and OmpA as potential targets for drug development against A. baumannii persisters.


Assuntos
Acinetobacter baumannii , Meropeném/farmacologia , Virulência , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Eur J Med Chem ; 245(Pt 1): 114908, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36435016

RESUMO

Herein a series of 4-aminoquinolines were synthesized in an attempt to optimize and study the structural features related to LABIO-17 biological activity, a Mycobacterium tuberculosis NADH-dependent enoyl-acyl carrier protein reductase (MtInhA) inhibitor previously identified by a virtual-ligand-screening approach. Structure-activity relationships led to novel submicromolar inhibitors of MtInhA and potent antitubercular agents. The lead compound is 87-fold more potent as enzymatic inhibitors and 32-fold more potent against M. tuberculosis H37Rv strain in comparison with LABIO-17. These molecules were also active against multidrug-resistant strains, devoid of apparent toxicity to mammalian cells and showed favorable in vitro ADME profiles. Additionally, these compounds were active in an intracellular model of tuberculosis (TB) infection, showed no genotoxicity signals, satisfactory absorption parameters and absence of in vivo acute toxicity. Finally, treatment with selected 4-aminoquinoline for two weeks produced bacteriostatic effect in a murine model of TB. Taken together, these findings indicate that this chemical class may furnish candidates for the future development of drug-sensitive and drug-resistant tuberculosis treatments.


Assuntos
Aminoquinolinas , Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+) , Animais , Camundongos , Aminoquinolinas/síntese química , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Antituberculosos/síntese química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Tuberculose/tratamento farmacológico , Modelos Animais de Doenças
3.
AMB Express ; 12(1): 146, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417032

RESUMO

Healthcare-associated infections (HAIs) represent a global challenge and an even more staggering concern when related to microorganisms capable of resisting and surviving for long periods in the environment, such as Acinetobacter spp. Strategies that allow a reduction of pathogens from hospital environments represent an additional barrier in infection control protocols, minimizing transmission to hospitalized patients. Considering the antimicrobial properties of copper, here, the bacterial load and the presence of Acinetobacter spp. were monitored on high handling surfaces covered by 99.9% copper films on intensive and non-intensive care unit bedrooms in a tertiary care hospital. Firstly, copper-coated films were able to inhibit the adhesion and biofilm formation of A. baumannii strains in in vitro assays. On the other hand, Acinetobacter spp. were isolated from both copper-coated and uncoated surfaces in the hospital, although the majority was detected on surfaces without copper. All carbapenem-resistant A. baumannii isolates identified harbored the blaoxa-23 gene, while the A. nosocomialis isolates were susceptible to most antimicrobials tested. All isolates were susceptible to polymyxin B. Regarding the total aerobic bacteria, surfaces with copper-coated films presented lower total loads than those detected for controls. Copper coating films may be a workable strategy to mitigate HAIs, given their potential in reducing bacterial loads in nosocomial environments, including threatening pathogens like A. baumannii.

4.
ACS Med Chem Lett ; 13(8): 1337-1344, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978694

RESUMO

Using cycloalkyl and electron-donating groups to decrease the carbonyl electrophilicity, a novel series of 2-(quinoline-4-yloxy)acetamides was synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Structure-activity relationship studies led to selective and potent antitubercular agents with minimum inhibitory concentrations in the submicromolar range against drug-sensitive and drug-resistant Mtb strains. An evaluation of the activity of the lead compounds against a spontaneous qcrB mutant strain indicated that the structures targeted the cytochrome bc 1 complex. In addition, selected molecules inhibited Mtb growth in a macrophage model of tuberculosis infection. Furthermore, the leading compound was chemically stable depending on the context and showed good kinetic solubility, high permeability, and a low rate of in vitro metabolism. Finally, the pharmacokinetic profile of the compound was assessed after oral administration to mice. To the best of our knowledge, for the first time, a 2-(quinoline-4-yloxy)acetamide was obtained with a sufficient exposure, which may enable in vivo effectiveness and its further development as an antituberculosis drug candidate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA