Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Lancet Glob Health ; 11(11): e1743-e1752, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858585

RESUMO

BACKGROUND: This study assessed the safety and immunogenicity of the Ad26.ZEBOV and MVA-BN-Filo Ebola virus (EBOV) vaccine regimen in infants aged 4-11 months in Guinea and Sierra Leone. METHODS: In this phase 2, randomised, double-blind, active-controlled trial, we randomly assigned healthy infants (1:1 in a sentinel cohort, 5:2 for the remaining infants via an interactive web response system) to receive Ad26.ZEBOV followed by MVA-BN-Filo (Ebola vaccine group) or two doses of meningococcal quadrivalent conjugate vaccine (control group) administered 56 days apart. Infants were recruited at two sites in west Africa: Conakry, Guinea, and Kambia, Sierra Leone. All infants received the meningococcal vaccine 8 months after being randomly assigned. The primary objective was safety. The secondary objective was immunogenicity, measured as EBOV glycoprotein-binding antibody concentration 21 days post-dose 2, using the Filovirus Animal Non-Clinical Group ELISA. This study is registered with ClinicalTrials.gov (NCT03929757) and the Pan African Clinical Trials Registry (PACTR201905827924069). FINDINGS: From Aug 20 to Nov 29, 2019, 142 infants were screened and 108 were randomly assigned (Ebola vaccine n=75; control n=33). The most common solicited local adverse event was injection-site pain (Ebola vaccine 15 [20%] of 75; control four [12%] of 33). The most common solicited systemic adverse events with the Ebola vaccine were irritability (26 [35%] of 75), decreased appetite (18 [24%] of 75), pyrexia (16 [21%] of 75), and decreased activity (15 [20%] of 75). In the control group, ten (30%) of 33 had irritability, seven (21%) of 33 had decreased appetite, three (9%) of 33 had pyrexia, and five (15%) of 33 had decreased activity. The frequency of unsolicited adverse events was 83% (62 of 75 infants) in the Ebola vaccine group and 85% (28 of 33 infants) in the control group. No serious adverse events were vaccine-related. In the Ebola vaccine group, EBOV glycoprotein-binding antibody geometric mean concentrations (GMCs) at 21 days post-dose 2 were 27 700 ELISA units (EU)/mL (95% CI 20 477-37 470) in infants aged 4-8 months and 20 481 EU/mL (15 325-27 372) in infants aged 9-11 months. The responder rate was 100% (74 of 74 responded). In the control group, GMCs for both age groups were less than the lower limit of quantification and the responder rate was 3% (one of 33 responded). INTERPRETATION: Ad26.ZEBOV and MVA-BN-Filo was well tolerated and induced strong humoral responses in infants younger than 1 year. There were no safety concerns related to vaccination. FUNDING: Janssen Vaccines & Prevention and Innovative Medicines Initiative 2 Joint Undertaking. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Lactente , Vacinas contra Ebola/efeitos adversos , Doença pelo Vírus Ebola/prevenção & controle , Serra Leoa , Guiné , Anticorpos Antivirais , Método Duplo-Cego , Glicoproteínas , Febre
2.
NPJ Vaccines ; 7(1): 156, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450746

RESUMO

Without clinical efficacy data, vaccine protective effect may be extrapolated from animals to humans using an immunologic marker that correlates with protection in animals. This immunobridging approach was used for the two-dose Ebola vaccine regimen Ad26.ZEBOV, MVA-BN-Filo. Ebola virus (EBOV) glycoprotein binding antibody data obtained from 764 vaccinated healthy adults in five clinical studies (NCT02416453, NCT02564523, NCT02509494, NCT02543567, NCT02543268) were used to calculate mean predicted survival probability (with preplanned 95% confidence interval [CI]). We used a logistic regression model based on EBOV glycoprotein binding antibody responses in vaccinated non-human primates (NHPs) and NHP survival after EBOV challenge. While the protective effect of the vaccine regimen in humans can be inferred in this fashion, the extrapolated survival probability cannot be directly translated into vaccine efficacy. The primary immunobridging analysis evaluated the lower limit of the CI against predefined success criterion of 20% and passed with mean predicted survival probability of 53.4% (95% CI: 36.7-67.4).

3.
Trials ; 23(1): 513, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725488

RESUMO

BACKGROUND: Risks to mother and fetus following Ebola virus infection are very high. Evaluation of safety and immunogenicity of non-replicating Ebola vaccine candidates is a priority for use in pregnant women. This is the protocol for a randomized, open-label, single-center phase 3 clinical trial of the safety, reactogenicity, and immunogenicity of the 2-dose Ebola vaccine regimen in healthy adult pregnant women. This 2-dose regimen has been shown to be safe, judged effective, and approved in non-pregnant populations. METHODS: A total of 2000 adult (≥ 18 years of age) pregnant women will be enrolled from antenatal care facilities in Western Rwanda and randomized (1:1) to receive the 2-dose Ebola vaccine regimen (Ad26.ZEBOV, MVA-BN-Filo (group A)) or control (unvaccinated pregnant women (group B)). The primary objectives are to (1) assess adverse maternal/fetal outcomes in randomized pregnant women up to 1.5 months after delivery and (2) assess adverse neonatal/infant outcomes in neonates/infants born to randomized women up to 3.5 months after birth. The frequency and relatedness of all serious adverse events in women and newborns from randomization or birth, respectively, until study end will be reported. The reactogenicity and unsolicited adverse events of the 2-dose Ebola vaccine regimen in all vaccinated pregnant women (group A) will be reported. We will also assess the immunogenicity of the 2-dose Ebola vaccine regimen in 150 pregnant women who are anticipated to receive both vaccine doses within the course of their pregnancy (a subset of the 1000 pregnant vaccinated women from group A) compared to 150 non-pregnant women vaccinated after delivery (a subset of group B). The persistence of maternal antibodies in 75 infants born to women from the group A subset will be assessed. Exploratory analyses include assessment of acceptability of the 2-dose Ebola vaccine regimen among group A and assessment of maternal antibodies in breast milk in 50 women from group A and 10 controls (women from group B prior to vaccination). DISCUSSION: This study is intended to support a label variation to relax restrictions on use in pregnant women, a vulnerable population with high medical need. TRIAL REGISTRATION: Clinicaltrials.gov NCT04556526 . September 21, 2020.


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola , Adulto , Ensaios Clínicos Fase III como Assunto , Vacinas contra Ebola/efeitos adversos , Feminino , Humanos , Recém-Nascido , Gravidez , Gestantes , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinação/efeitos adversos , Vacinação/métodos
4.
BMJ Open ; 12(3): e055596, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260458

RESUMO

INTRODUCTION: Ebola virus disease (EVD) continues to be a significant public health problem in sub-Saharan Africa, especially in the Democratic Republic of the Congo (DRC). Large-scale vaccination during outbreaks may reduce virus transmission. We established a large population-based clinical trial of a heterologous, two-dose prophylactic vaccine during an outbreak in eastern DRC to determine vaccine effectiveness. METHODS AND ANALYSIS: This open-label, non-randomised, population-based trial enrolled eligible adults and children aged 1 year and above. Participants were offered the two-dose candidate EVD vaccine regimen VAC52150 (Ad26.ZEBOV, Modified Vaccinia Ankara (MVA)-BN-Filo), with the doses being given 56 days apart. After vaccination, serious adverse events (SAEs) were passively recorded until 1 month post dose 2. 1000 safety subset participants were telephoned at 1 month post dose 2 to collect SAEs. 500 pregnancy subset participants were contacted to collect SAEs at D7 and D21 post dose 1 and at D7, 1 month, 3 months and 6 months post dose 2, unless delivery was before these time points. The first 100 infants born to these women were given a clinical examination 3 months post delivery. Due to COVID-19 and temporary suspension of dose 2 vaccinations, at least 50 paediatric and 50 adult participants were enrolled into an immunogenicity subset to examine immune responses following a delayed second dose. Samples collected predose 2 and at 21 days post dose 2 will be tested using the Ebola viruses glycoprotein Filovirus Animal Non-Clinical Group ELISA. For qualitative research, in-depth interviews and focus group discussions were being conducted with participants or parents/care providers of paediatric participants. ETHICS AND DISSEMINATION: Approved by Comité National d'Ethique et de la Santé du Ministère de la santé de RDC, Comité d'Ethique de l'Ecole de Santé Publique de l'Université de Kinshasa, the LSHTM Ethics Committee and the MSF Ethics Review Board. Findings will be presented to stakeholders and conferences. Study data will be made available for open access. TRIAL REGISTRATION NUMBER: NCT04152486.


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola , Adulto , COVID-19 , Criança , Ensaios Clínicos Fase III como Assunto , República Democrática do Congo/epidemiologia , Vacinas contra Ebola/efeitos adversos , Feminino , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Esquemas de Imunização
5.
PLoS Med ; 19(1): e1003865, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015777

RESUMO

BACKGROUND: Reoccurring Ebola outbreaks in West and Central Africa have led to serious illness and death in thousands of adults and children. The objective of this study was to assess safety, tolerability, and immunogenicity of the heterologous 2-dose Ad26.ZEBOV, MVA-BN-Filo vaccination regimen in adolescents and children in Africa. METHODS AND FINDINGS: In this multicentre, randomised, observer-blind, placebo-controlled Phase II study, 131 adolescents (12 to 17 years old) and 132 children (4 to 11 years old) were enrolled from Eastern and Western Africa and randomised 5:1 to receive study vaccines or placebo. Vaccine groups received intramuscular injections of Ad26.ZEBOV (5 × 1010 viral particles) and MVA-BN-Filo (1 × 108 infectious units) 28 or 56 days apart; placebo recipients received saline. Primary outcomes were safety and tolerability. Solicited adverse events (AEs) were recorded until 7 days after each vaccination and serious AEs (SAEs) throughout the study. Secondary and exploratory outcomes were humoral immune responses (binding and neutralising Ebola virus [EBOV] glycoprotein [GP]-specific antibodies), up to 1 year after the first dose. Enrolment began on February 26, 2016, and the date of last participant last visit was November 28, 2018. Of the 263 participants enrolled, 217 (109 adolescents, 108 children) received the 2-dose regimen, and 43 (20 adolescents, 23 children) received 2 placebo doses. Median age was 14.0 (range 11 to 17) and 7.0 (range 4 to 11) years for adolescents and children, respectively. Fifty-four percent of the adolescents and 51% of the children were male. All participants were Africans, and, although there was a slight male preponderance overall, the groups were well balanced. No vaccine-related SAEs were reported; solicited AEs were mostly mild/moderate. Twenty-one days post-MVA-BN-Filo vaccination, binding antibody responses against EBOV GP were observed in 100% of vaccinees (106 adolescents, 104 children). Geometric mean concentrations tended to be higher after the 56-day interval (adolescents 13,532 ELISA units [EU]/mL, children 17,388 EU/mL) than the 28-day interval (adolescents 6,993 EU/mL, children 8,007 EU/mL). Humoral responses persisted at least up to Day 365. A limitation of the study is that the follow-up period was limited to 365 days for the majority of the participants, and so it was not possible to determine whether immune responses persisted beyond this time period. Additionally, formal statistical comparisons were not preplanned but were only performed post hoc. CONCLUSIONS: The heterologous 2-dose vaccination was well tolerated in African adolescents and children with no vaccine-related SAEs. All vaccinees displayed anti-EBOV GP antibodies after the 2-dose regimen, with higher responses in the 56-day interval groups. The frequency of pyrexia after vaccine or placebo was higher in children than in adolescents. These data supported the prophylactic indication against EBOV disease in a paediatric population, as licenced in the EU. TRIAL REGISTRATION: ClinicalTrials.gov NCT02564523.


Assuntos
Vacinas contra Ebola/efeitos adversos , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunidade Humoral , Imunogenicidade da Vacina , Adolescente , África Oriental , África Ocidental , Criança , Pré-Escolar , Feminino , Humanos , Injeções Intramusculares , Masculino
6.
Lancet Infect Dis ; 22(1): 110-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529962

RESUMO

BACKGROUND: Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone. METHODS: This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1-17 years were enrolled in three age cohorts (12-17 years, 4-11 years, and 1-3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1-3 years after placebo injection to 21% (30 of 144) of children aged 4-11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12-17 years and 4-11 years age cohorts after the first and second dose, and pyrexia in the 1-3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12-17 years (9929 ELISA units [EU]/mL [95% CI 8172-12 064]), in 119 (99%) of 120 aged 4-11 years (10 212 EU/mL [8419-12 388]), and in 118 (98%) of 121 aged 1-3 years (22 568 EU/mL [18 426-27 642]). INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1-17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Imunogenicidade da Vacina , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Adolescente , Criança , Pré-Escolar , Esquema de Medicação , Feminino , Humanos , Lactente , Injeções Intramusculares , Masculino , Serra Leoa , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
7.
Lancet Infect Dis ; 22(1): 97-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529963

RESUMO

BACKGROUND: The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola. METHODS: The trial comprised two stages: an open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2. The study was done at three clinics in Kambia district, Sierra Leone. In stage 1, healthy adults (aged ≥18 years) residing in or near Kambia district, received an intramuscular injection of Ad26.ZEBOV (5 × 1010 viral particles) on day 1 (first dose) followed by an intramuscular injection of MVA-BN-Filo (1 × 108 infectious units) on day 57 (second dose). An Ad26.ZEBOV booster vaccination was offered at 2 years after the first dose to stage 1 participants. The eligibility criteria for adult participants in stage 2 were consistent with stage 1 eligibility criteria. Stage 2 participants were randomly assigned (3:1), by computer-generated block randomisation (block size of eight) via an interactive web-response system, to receive either the Ebola vaccine regimen (Ad26.ZEBOV followed by MVA-BN-Filo) or an intramuscular injection of a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo on day 57 (second dose; control group). Study team personnel, except those with primary responsibility for study vaccine preparation, and participants were masked to study vaccine allocation. The primary outcome was the safety of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen, which was assessed in all participants who had received at least one dose of study vaccine. Safety was assessed as solicited local and systemic adverse events occurring in the first 7 days after each vaccination, unsolicited adverse events occurring in the first 28 days after each vaccination, and serious adverse events or immediate reportable events occurring up to each participant's last study visit. Secondary outcomes were to assess Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second vaccine in a per-protocol set of participants (ie, those who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response) and to assess the safety and tolerability of the Ad26.ZEBOV booster vaccination in stage 1 participants who had received the booster dose. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: Between Sept 30, 2015, and Oct 19, 2016, 443 participants (43 in stage 1 and 400 in stage 2) were enrolled; 341 participants assigned to receive the Ad26.ZEBOV and MVA-BN-Filo regimen and 102 participants assigned to receive the MenACWY and placebo regimen received at least one dose of study vaccine. Both regimens were well tolerated with no safety concerns. In stage 1, solicited local adverse events (mostly mild or moderate injection-site pain) were reported in 12 (28%) of 43 participants after Ad26.ZEBOV vaccination and in six (14%) participants after MVA-BN-Filo vaccination. In stage 2, solicited local adverse events were reported in 51 (17%) of 298 participants after Ad26.ZEBOV vaccination, in 58 (24%) of 246 after MVA-BN-Filo vaccination, in 17 (17%) of 102 after MenACWY vaccination, and in eight (9%) of 86 after placebo injection. In stage 1, solicited systemic adverse events were reported in 18 (42%) of 43 participants after Ad26.ZEBOV vaccination and in 17 (40%) after MVA-BN-Filo vaccination. In stage 2, solicited systemic adverse events were reported in 161 (54%) of 298 participants after Ad26.ZEBOV vaccination, in 107 (43%) of 246 after MVA-BN-Filo vaccination, in 51 (50%) of 102 after MenACWY vaccination, and in 39 (45%) of 86 after placebo injection. Solicited systemic adverse events in both stage 1 and 2 participants included mostly mild or moderate headache, myalgia, fatigue, and arthralgia. The most frequent unsolicited adverse event after the first dose was headache in stage 1 and malaria in stage 2. Malaria was the most frequent unsolicited adverse event after the second dose in both stage 1 and 2. No serious adverse event was considered related to the study vaccine, and no immediate reportable events were observed. In stage 1, the safety profile after the booster vaccination was not notably different to that observed after the first dose. Vaccine-induced humoral immune responses were observed in 41 (98%) of 42 stage 1 participants (geometric mean binding antibody concentration 4784 ELISA units [EU]/mL [95% CI 3736-6125]) and in 176 (98%) of 179 stage 2 participants (3810 EU/mL [3312-4383]) at 21 days after the second vaccination. INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo vaccine regimen was well tolerated and immunogenic, with persistent humoral immune responses. These data support the use of this vaccine regimen for Ebola virus disease prophylaxis in adults. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunogenicidade da Vacina , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Adulto , Anticorpos Antivirais/imunologia , República Democrática do Congo , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Ebolavirus/genética , Feminino , Humanos , Imunidade Humoral , Masculino , Serra Leoa , Vacinação/métodos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
8.
NPJ Vaccines ; 6(1): 157, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930928

RESUMO

Two phase 3 clinical studies were conducted in the USA to bridge across different Ad26.ZEBOV manufacturing processes and sites, and to evaluate the immunogenicity of different dose levels of Ad26.ZEBOV and MVA-BN-Filo. Study 1 evaluated the immunological equivalence of three batches of Ad26.ZEBOV administered as dose 1, followed by one batch of MVA-BN-Filo as dose 2. In Study 2, immunogenic non-inferiority of intermediate (Ad26.ZEBOV: 2 × 1010 viral particles [vp], MVA-BN-Filo: 5 × 107 infectious units [Inf.U]) and low (8 × 109 vp, 5 × 107 Inf.U) doses of Ad26.ZEBOV and MVA-BN-Filo were evaluated against the full clinical dose (5 × 1010 vp, 1 × 108 Inf.U). In Study 1, equivalence was demonstrated for two of three batch comparisons post-dose 1 and all three batches after the full regimen. Study 2 demonstrated a dose-dependent response; however, non-inferiority against the full clinical dose was not met. All regimens were well tolerated and immune responses were observed in all participants, regardless of manufacturing process or dose. Consistency of immunogenicity of different Ad26.ZEBOV batches was demonstrated and a dose-dependent response was observed after Ad26.ZEBOV, MVA-BN-Filo vaccination. ClinicalTrials.gov identifiers: NCT02543268; NCT02543567.

9.
PLoS Med ; 18(10): e1003813, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714820

RESUMO

BACKGROUND: We investigated safety, tolerability, and immunogenicity of the heterologous 2-dose Ebola vaccination regimen in healthy and HIV-infected adults with different intervals between Ebola vaccinations. METHODS AND FINDINGS: In this randomised, observer-blind, placebo-controlled Phase II trial, 668 healthy 18- to 70-year-olds and 142 HIV-infected 18- to 50-year-olds were enrolled from 1 site in Kenya and 2 sites each in Burkina Faso, Cote d'Ivoire, and Uganda. Participants received intramuscular Ad26.ZEBOV followed by MVA-BN-Filo at 28-, 56-, or 84-day intervals, or saline. Females represented 31.4% of the healthy adult cohort in contrast to 69.7% of the HIV-infected cohort. A subset of healthy adults received booster vaccination with Ad26.ZEBOV or saline at Day 365. Following vaccinations, adverse events (AEs) were collected until 42 days post last vaccination and serious AEs (SAEs) were recorded from signing of the ICF until the end of the study. The primary endpoint was safety, and the secondary endpoint was immunogenicity. Anti-Ebola virus glycoprotein (EBOV GP) binding and neutralising antibodies were measured at baseline and at predefined time points throughout the study. The first participant was enrolled on 9 November 2015, and the date of last participant's last visit was 12 February 2019. No vaccine-related SAEs and mainly mild-to-moderate AEs were observed among the participants. The most frequent solicited AEs were injection-site pain (local), and fatigue, headache, and myalgia (systemic), respectively. Twenty-one days post-MVA-BN-Filo vaccination, geometric mean concentrations (GMCs) with 95% confidence intervals (CIs) of EBOV GP binding antibodies in healthy adults in 28-, 56-, and 84-day interval groups were 3,085 EU/mL (2,648 to 3,594), 7,518 EU/mL (6,468 to 8,740), and 7,300 EU/mL (5,116 to 10,417), respectively. In HIV-infected adults in 28- and 56-day interval groups, GMCs were 4,207 EU/mL (3,233 to 5,474) and 5,283 EU/mL (4,094 to 6,817), respectively. Antibody responses were observed until Day 365. Ad26.ZEBOV booster vaccination after 1 year induced an anamnestic response. Study limitations include that some healthy adult participants either did not receive dose 2 or received dose 2 outside of their protocol-defined interval and that the follow-up period was limited to 365 days for most participants. CONCLUSIONS: Ad26.ZEBOV, MVA-BN-Filo vaccination was well tolerated and immunogenic in healthy and HIV-infected African adults. Increasing the interval between vaccinations from 28 to 56 days improved the magnitude of humoral immune responses. Antibody levels persisted to at least 1 year, and Ad26.ZEBOV booster vaccination demonstrated the presence of vaccination-induced immune memory. These data supported the approval by the European Union for prophylaxis against EBOV disease in adults and children ≥1 year of age. TRIAL REGISTRATION: ClinicalTrials.gov NCT02564523.


Assuntos
Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/imunologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Vacinação/efeitos adversos , Adulto , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Relação Dose-Resposta Imunológica , Feminino , Vetores Genéticos/imunologia , Glicoproteínas/imunologia , Humanos , Imunidade Celular/imunologia , Masculino , Placebos , Proteínas Virais/imunologia
10.
Vaccine ; 39(22): 3081-3101, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33676782

RESUMO

Replication-incompetent adenoviral vectors have been under investigation as a platform to carry a variety of transgenes, and express them as a basis for vaccine development. A replication-incompetent adenoviral vector based on human adenovirus type 26 (Ad26) has been evaluated in several clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and features of recombinant viral vector vaccines. This paper reviews features of the Ad26 vectors, including tabulation of safety and risk assessment characteristics of Ad26-based vaccines. In the Ad26 vector, deletion of E1 gene rendering the vector replication incompetent is combined with additional genetic engineering for vaccine manufacturability and transgene expression optimization. These vaccines can be manufactured in mammalian cell lines at scale providing an effective, flexible system for high-yield manufacturing. Ad26 vector vaccines have favorable thermostability profiles, compatible with vaccine supply chains. Safety data are compiled in the Ad26 vaccine safety database version 4.0, with unblinded data from 23 ongoing and completed clinical studies for 3912 participants in five different Ad26-based vaccine programs. Overall, Ad26-based vaccines have been well tolerated, with no significant safety issues identified. Evaluation of Ad26-based vaccines is continuing, with >114,000 participants vaccinated as of 4th September 2020. Extensive evaluation of immunogenicity in humans shows strong, durable humoral and cellular immune responses. Clinical trials have not revealed impact of pre-existing immunity to Ad26 on vaccine immunogenicity, even in the presence of Ad26 neutralizing antibody titers or Ad26-targeting T cell responses at baseline. The first Ad26-based vaccine, against Ebola virus, received marketing authorization from EC on 1st July 2020, as part of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen. New developments based on Ad26 vectors are underway, including a COVID-19 vaccine, which is currently in phase 3 of clinical evaluation.


Assuntos
COVID-19 , Ebolavirus , Vacinas Virais , Animais , Vacinas contra COVID-19 , Vetores Genéticos , Humanos , Medição de Risco , SARS-CoV-2 , Vacinas Virais/genética
11.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587687

RESUMO

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Adenoviridae/imunologia , Adulto , Animais , Método Duplo-Cego , Feminino , Humanos , Masculino , Camundongos , Estados Unidos , Zika virus/imunologia , Infecção por Zika virus/imunologia
12.
Lancet Infect Dis ; 21(4): 493-506, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33217361

RESUMO

BACKGROUND: To address the unmet medical need for an effective prophylactic vaccine against Ebola virus we assessed the safety and immunogenicity of three different two-dose heterologous vaccination regimens with a replication-deficient adenovirus type 26 vector-based vaccine (Ad26.ZEBOV), expressing Zaire Ebola virus glycoprotein, and a non-replicating, recombinant, modified vaccinia Ankara (MVA) vector-based vaccine, encoding glycoproteins from Zaire Ebola virus, Sudan virus, and Marburg virus, and nucleoprotein from the Tai Forest virus. METHODS: This randomised, observer-blind, placebo-controlled, phase 2 trial was done at seven hospitals in France and two research centres in the UK. Healthy adults (aged 18-65 years) with no history of Ebola vaccination were enrolled into four cohorts. Participants in cohorts I-III were randomly assigned (1:1:1) using computer-generated randomisation codes into three parallel groups (randomisation for cohorts II and III was stratified by country and age), in which participants were to receive an intramuscular injection of Ad26.ZEBOV on day 1, followed by intramuscular injection of MVA-BN-Filo at either 28 days (28-day interval group), 56 days (56-day interval group), or 84 days (84-day interval group) after the first vaccine. Within these three groups, participants in cohort II (14:1) and cohort III (10:3) were further randomly assigned to receive either Ad26.ZEBOV or placebo on day 1, followed by either MVA-BN-Filo or placebo on days 28, 56, or 84. Participants in cohort IV were randomly assigned (5:1) to receive one dose of either Ad26.ZEBOV or placebo on day 1 for vector shedding assessments. For cohorts II and III, study site personnel, sponsor personnel, and participants were masked to vaccine allocation until all participants in these cohorts had completed the post-MVA-BN-Filo vaccination visit at 6 months or had discontinued the trial, whereas cohort I was open-label. For cohort IV, study site personnel and participants were masked to vaccine allocation until all participants in this cohort had completed the post-vaccination visit at 28 days or had discontinued the trial. The primary outcome, analysed in all participants who had received at least one dose of vaccine or placebo (full analysis set), was the safety and tolerability of the three vaccination regimens, as assessed by participant-reported solicited local and systemic adverse events within 7 days of receiving both vaccines, unsolicited adverse events within 42 days of receiving the MVA-BN-Filo vaccine, and serious adverse events over 365 days of follow-up. The secondary outcome was humoral immunogenicity, as measured by the concentration of Ebola virus glycoprotein-binding antibodies at 21 days after receiving the MVA-BN-Filo vaccine. The secondary outcome was assessed in the per-protocol analysis set. This study is registered at ClinicalTrials.gov, NCT02416453, and EudraCT, 2015-000596-27. FINDINGS: Between June 23, 2015, and April 27, 2016, 423 participants were enrolled: 408 in cohorts I-III were randomly assigned to the 28-day interval group (123 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), the 56-day interval group (124 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), and the 84-day interval group (117 to receive Ad26.ZEBOV and MVA-BN-Filo, and 18 to receive placebo), and 15 participants in cohort IV were assigned to receive Ad26.ZEBOV and MVA-BN-Filo (n=13) or to receive placebo (n=2). 421 (99·5%) participants received at least one dose of vaccine or placebo. The trial was temporarily suspended after two serious neurological adverse events were reported, one of which was considered as possibly related to vaccination, and per-protocol vaccination was disrupted for some participants. Vaccinations were generally well tolerated. Mild or moderate local adverse events (mostly pain) were reported after 206 (62%) of 332 Ad26.ZEBOV vaccinations, 136 (58%) of 236 MVA-BN-Filo vaccinations, and 11 (15%) of 72 placebo injections. Systemic adverse events were reported after 255 (77%) Ad26.ZEBOV vaccinations, 116 (49%) MVA-BN-Filo vaccinations, and 33 (46%) placebo injections, and included mostly mild or moderate fatigue, headache, or myalgia. Unsolicited adverse events occurred after 115 (35%) of 332 Ad26.ZEBOV vaccinations, 81 (34%) of 236 MVA-BN-Filo vaccinations, and 24 (33%) of 72 placebo injections. At 21 days after receiving the MVA-BN-Filo vaccine, geometric mean concentrations of Ebola virus glycoprotein-binding antibodies were 4627 ELISA units (EU)/mL (95% CI 3649-5867) in the 28-day interval group, 10 131 EU/mL (8554-11 999) in the 56-day interval group, and 11 312 mL (9072-14106) in the 84-day interval group, with antibody concentrations persisting at 1149-1205 EU/mL up to day 365. INTERPRETATION: The two-dose heterologous regimen with Ad26.ZEBOV and MVA-BN-Filo was safe, well tolerated, and immunogenic, with humoral and cellular immune responses persisting for 1 year after vaccination. Taken together, these data support the intended prophylactic indication for the vaccine regimen. FUNDING: Innovative Medicines Initiative and Janssen Vaccines & Prevention BV. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas contra Ebola/efeitos adversos , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Esquemas de Imunização , Imunogenicidade da Vacina , Adolescente , Adulto , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos de Coortes , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Feminino , França , Glicoproteínas/genética , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Placebos/efeitos adversos , Reino Unido , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Adulto Jovem
13.
NPJ Vaccines ; 5(1): 112, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335092

RESUMO

It has been proven challenging to conduct traditional efficacy trials for Ebola virus (EBOV) vaccines. In the absence of efficacy data, immunobridging is an approach to infer the likelihood of a vaccine protective effect, by translating vaccine immunogenicity in humans to a protective effect, using the relationship between vaccine immunogenicity and the desired outcome in a suitable animal model. We here propose to infer the protective effect of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen with an 8-week interval in humans by immunobridging. Immunogenicity and protective efficacy data were obtained for Ad26.ZEBOV and MVA-BN-Filo vaccine regimens using a fully lethal EBOV Kikwit challenge model in cynomolgus monkeys (nonhuman primates [NHP]). The association between EBOV neutralizing antibodies, glycoprotein (GP)-binding antibodies, and GP-reactive T cells and survival in NHP was assessed by logistic regression analysis. Binding antibodies against the EBOV surface GP were identified as the immune parameter with the strongest correlation to survival post EBOV challenge, and used to infer the predicted protective effect of the vaccine in humans using published data from phase I studies. The human vaccine-elicited EBOV GP-binding antibody levels are in a range associated with significant protection against mortality in NHP. Based on this immunobridging analysis, the EBOV GP-specific-binding antibody levels elicited by the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen in humans will likely provide protection against EBOV disease.

14.
Vaccine ; 35(28): 3564-3574, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28536030

RESUMO

BACKGROUND: Vaccination against Haemophilus influenzae type b (Hib) is included in routine pediatric immunization schedule in the United States. Previous vaccine shortages have created the need for additional options for Hib vaccination. METHODS: This phase III, randomized, multi-centered study (NCT01000974) evaluated the safety and immunogenicity of a monovalent tetanus toxoid-conjugate Hib vaccine (Hib-TT) compared to a monovalent (Hib-TT control) and a combination Hib-TT vaccine. We hierarchically assessed lot-to-lot consistency of 3 Hib-TT lots and non-inferiority of Hib-TT to Hib-TT control. We co-administered routine pediatric vaccines with Hib-TT vaccines at 2, 4, 6months (primary vaccination) and 15-18months of age (booster vaccination). We recorded adverse events (AEs) for 4 (solicited) and 31days (unsolicited) post-vaccination and serious AEs (SAEs) throughout the study. RESULTS: Of 4009 enrolled children, 3086 completed booster phase. Lot-to-lot consistency was not demonstrated. The study met statistical criteria for non-inferiority of Hib-TT to Hib-TT control in terms of immune responses to Hib and co-administered vaccines' antigens, but not in terms of participants achieving post-primary vaccination anti-PRP levels ≥1µg/mL. Because of the hierarchical nature of the objectives, non-inferiority could not be established. In all groups, 92.5-96.7% and 99.6-100% of participants achieved anti-PRP levels ≥0.15µg/mL, while 78.3-89.8% and 97.9-99.1% had anti-PRP levels ≥1µg/mL, post-primary and post-booster vaccination, respectively. Immune responses to co-administered vaccines and reported incidence of AEs were comparable among groups. We recorded SAEs for 107/2963 (3.6%), 24/520 (4.6%), and 21/520 (4.0%) children post-primary vaccination, and 29/2337 (1.2%), 4/435 (0.9%), and 2/400 (0.5%) children post-booster vaccination with Hib-TT, Hib-TT control and combination Hib-TT vaccine, respectively; 6/5330 (0.1%) SAEs in the Hib-TT groups were considered vaccine-related. CONCLUSION: Hib-TT induced seroprotective antibody concentrations in the majority of participants and was well-tolerated when co-administered with routine pediatric vaccines according to a 3+1 schedule.


Assuntos
Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/efeitos adversos , Vacinas Anti-Haemophilus/imunologia , Anticorpos Antibacterianos/sangue , Cápsulas Bacterianas/imunologia , Feminino , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/imunologia , Vacinas Anti-Haemophilus/administração & dosagem , Vacinas Anti-Haemophilus/química , Haemophilus influenzae tipo b/imunologia , Humanos , Esquemas de Imunização , Imunização Secundária , Imunogenicidade da Vacina , Lactente , Masculino , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/efeitos adversos , Toxoide Tetânico/imunologia , Estados Unidos/epidemiologia , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/efeitos adversos , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
15.
J Infect Dis ; 215(1): 24-33, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694633

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of childhood bronchiolitis and pneumonia, particularly in early infancy. Immunization of pregnant women could boost preexisting immune responses, providing passive protection to newborns through placental transfer of anti-RSV antibody. METHODS: In this first-in-humans clinical trial of a purified recombinant RSV protein F vaccine engineered to preferentially maintain prefusion conformation (RSV-PreF), 128 healthy men 18-44 years old were randomized to one dose of a RSV-PreF vaccine containing 10, 30, or 60 µg of RSV-PreF antigen, with or without alum adjuvant, or control, and followed for one year for safety and immunogenicity outcomes. RESULTS: Injection site pain was the most common adverse event, reported by up to 81.3% of participants. The highest RSV neutralizing antibody responses were in the 30 µg RSV-PreF/alum, 60 µg RSV-PreF/alum, and 60 µg RSV-PreF/nonadjuvant groups. Responses were evident on day 7, and 30 days after vaccination these participants had RSV-A neutralizing antibody titers of ≥1:512, and >70% had titers of 1:1024, with titers increasing by 3.2-4.9 fold. Responses remained high on day 60 but waned on days 180 and 360. CONCLUSIONS: The RSV-PreF vaccine elicited rapid RSV neutralizing antibody responses in healthy young men, with an acceptable adverse event profile.


Assuntos
Adjuvantes Imunológicos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Adolescente , Adulto , Compostos de Alúmen , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Feminino , Humanos , Masculino , Gravidez , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sincicial Respiratório Humano/química , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/isolamento & purificação , Adulto Jovem
16.
Vaccine ; 34(24): 2686-91, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27105563

RESUMO

BACKGROUND: The exact duration of antibody persistence to hepatitis A and B and the need for booster dosing following primary immunisation remains undefined. A long-term study was designed to follow antibody persistence and immune memory on an annual basis for up to 15 years following vaccination during adolescence. METHODS: Subjects received a combined hepatitis A and B vaccine (Twinrix™, GSK Vaccines, Belgium) at 12-15 years of age, either as 2-dose of the adult formulation or 3-dose of the paediatric formulation. Blood samples were taken every year thereafter to assess antibody persistence and immune memory to hepatitis A and B. Antibodies to hepatitis A virus (anti-HAV) and hepatitis B surface antigen (anti-HBs) were measured at Years 11-15. At Year 15 immune memory was further assessed by measuring the anamnestic response to a challenge dose of the monovalent vaccine, which was administered to subjects whose antibody concentrations fell below the pre-defined cut-offs (anti-HAV: <15mIU/mL; anti-HBs: <10mIU/mL). RESULTS: 209 subjects returned for follow-up at Year 15 of whom 162 were included in the long-term according-to-protocol immunogenicity cohort. All subjects remained seropositive for anti-HAV antibodies, while 81.1% and 81.8% still had anti-HBs antibodies ≥10mIU/mL in the 2- and 3-dose groups, respectively. Following hepatitis B vaccine challenge dose administration to 19 subjects, all except one in the 3-dose group, mounted a robust anamnestic response. The safety and reactogenicity profile of the hepatitis B challenge was consistent with previous experience. CONCLUSION: Immunity to hepatitis A and B persists 15 years after adolescent vaccination with a combined hepatitis A and B vaccine. Highly effective anamnestic response indicates that a booster dose should not be required for 15 years after primary vaccination. TRIAL REGISTRATION: http://www.clinicaltrials.govNCT00875485.


Assuntos
Vacinas contra Hepatite A/administração & dosagem , Hepatite A/prevenção & controle , Vacinas contra Hepatite B/administração & dosagem , Hepatite B/prevenção & controle , Memória Imunológica , Adolescente , Adulto , Feminino , Anticorpos Anti-Hepatite A/sangue , Vacinas contra Hepatite A/uso terapêutico , Anticorpos Anti-Hepatite B/sangue , Vacinas contra Hepatite B/uso terapêutico , Humanos , Masculino , Fatores de Tempo , Vacinas Combinadas/administração & dosagem
17.
Pediatr Infect Dis J ; 33(12): 1246-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25037033

RESUMO

BACKGROUND: The immunogenicity and safety of the investigational diphtheria, tetanus, acellular pertussis, hepatitis B, poliomyelitis, Haemophilus influenzae type b (Hib) and meningococcal serogroup C (MenC) heptavalent combination vaccine were compared with those of licensed control vaccines. METHODS: In this open, phase II, randomized study (NCT01090453), 480 infants from Germany, France and Canada received the heptavalent vaccine (Hepta group) or hexavalent and monovalent MenC control vaccines (HexaMenC group) co-administered with a 13-valent pneumococcal conjugate vaccine at 2, 4 and 12 months of age. Immunogenicity was measured 1 month after the second primary dose, and before and 1 month after the booster dose. Safety and reactogenicity were also evaluated. RESULTS: Non-inferiority of immune responses to MenC and Hib induced by 2-dose primary vaccination with the heptavalent vaccine versus control vaccines was demonstrated. In exploratory analyses, postprimary and postbooster functional antibody geometric mean titers against MenC tended to be lower (1119.5 vs. 3200.5; 2653.8 vs. 6028.4) and antibody geometric mean concentrations against Hib higher (1.594 vs. 0.671 µg/mL; 17.678 vs. 13.737 µg/mL) in the Hepta versus the HexaMenC group. The heptavalent and control vaccines were immunogenic to all other antigens, although immune responses to poliovirus were lower than expected in both groups. No differences in safety and reactogenicity profiles were detected between groups. CONCLUSIONS: The heptavalent vaccine induced non-inferior MenC and Hib responses compared with control vaccines. Both vaccination regimens, when administered at 2, 4 and 12 months of age, had comparable safety profiles and were immunogenic to all antigens, with lower-than-expected responses to poliomyelitis.


Assuntos
Vacina contra Difteria, Tétano e Coqueluche/efeitos adversos , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Vacinas Anti-Haemophilus/efeitos adversos , Vacinas Anti-Haemophilus/imunologia , Vacinas contra Hepatite B/efeitos adversos , Vacinas contra Hepatite B/imunologia , Vacinas Meningocócicas/efeitos adversos , Vacinas Meningocócicas/imunologia , Vacina Antipólio de Vírus Inativado/efeitos adversos , Vacina Antipólio de Vírus Inativado/imunologia , Anticorpos Antibacterianos/sangue , Canadá , Vacina contra Difteria, Tétano e Coqueluche/administração & dosagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , França , Alemanha , Vacinas Anti-Haemophilus/administração & dosagem , Vacinas contra Hepatite B/administração & dosagem , Humanos , Lactente , Masculino , Vacinas Meningocócicas/administração & dosagem , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/efeitos adversos , Vacinas Combinadas/imunologia
18.
Pediatr Infect Dis J ; 32(7): 777-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23838777

RESUMO

BACKGROUND: Combination vaccines offer protection against multiple diseases with fewer injections. This study evaluated the immunogenicity and safety of an investigational diphtheria, tetanus, acellular pertussis, hepatitis B, poliomyelitis, Haemophilus influenzae type b (Hib) and meningococcal serogroup C (MenC) heptavalent combination vaccine (heptavalent vaccine) given as 4 doses at 2, 3, 4 and 12-18 months of age. METHODS: In this randomized, open, phase II study (NCT00970307/NCT01171989) conducted in Poland, 421 infants were enrolled to receive the heptavalent vaccine or licensed comparator vaccines. Immunogenicity against study vaccine antigens was measured prior to and 1 month after primary and booster vaccinations. Safety and reactogenicity of the vaccines were also evaluated. RESULTS: The primary noninferiority objectives of the MenC and Hib immune responses induced by the heptavalent vaccine versus comparator vaccines were reached after primary vaccination, but no statistical conclusion could be drawn after booster dose. One month after primary and booster vaccinations, ≥98.4% of the heptavalent vaccine recipients were seroprotected for MenC and Hib. Exploratory analyses indicated that the heptavalent vaccine induced higher postprimary vaccination antibody geometric mean concentrations against Hib, but lower postprimary and postbooster vaccinations geometric mean titers against MenC compared with the relevant comparator vaccines. The reactogenicity profiles of the vaccines were acceptable, although 1 infant vaccinated with the heptavalent vaccine experienced a serious adverse event (thrombocytopenia) considered possibly related to vaccination. CONCLUSIONS: The heptavalent vaccine was immunogenic and had a clinically acceptable safety profile when administered to infants and toddlers.


Assuntos
Vacina contra Difteria, Tétano e Coqueluche/efeitos adversos , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Vacinas Anti-Haemophilus/efeitos adversos , Vacinas Anti-Haemophilus/imunologia , Vacinas contra Hepatite B/efeitos adversos , Vacinas contra Hepatite B/imunologia , Vacinas Meningocócicas/efeitos adversos , Vacinas Meningocócicas/imunologia , Vacina Antipólio de Vírus Inativado/efeitos adversos , Vacina Antipólio de Vírus Inativado/imunologia , Vacinação/efeitos adversos , Vacinação/métodos , Anticorpos Antibacterianos/sangue , Atividade Bactericida do Sangue , Vacina contra Difteria, Tétano e Coqueluche/administração & dosagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Ensaio de Imunoadsorção Enzimática , Vacinas Anti-Haemophilus/administração & dosagem , Vacinas contra Hepatite B/administração & dosagem , Humanos , Lactente , Masculino , Vacinas Meningocócicas/administração & dosagem , Polônia , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/efeitos adversos , Vacinas Combinadas/imunologia
19.
Mol Cell ; 50(6): 831-43, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23685073

RESUMO

The prevalence of intellectual disability is around 3%; however, the etiology of the disease remains unclear in most cases. We identified a series of patients with X-linked intellectual disability presenting mutations in the Rad6a (Ube2a) gene, which encodes for an E2 ubiquitin-conjugating enzyme. Drosophila deficient for dRad6 display defective synaptic function as a consequence of mitochondrial failure. Similarly, mouse mRad6a (Ube2a) knockout and patient-derived hRad6a (Ube2a) mutant cells show defective mitochondria. Using in vitro and in vivo ubiquitination assays, we show that RAD6A acts as an E2 ubiquitin-conjugating enzyme that, in combination with an E3 ubiquitin ligase such as Parkin, ubiquitinates mitochondrial proteins to facilitate the clearance of dysfunctional mitochondria in cells. Hence, we identify RAD6A as a regulator of Parkin-dependent mitophagy and establish a critical role for RAD6A in maintaining neuronal function.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mitofagia , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Estudos de Casos e Controles , Linhagem Celular , Criança , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exoma , Estudos de Associação Genética , Humanos , Cinética , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/fisiologia , Mutação de Sentido Incorreto , Junção Neuromuscular/metabolismo , Linhagem , Análise de Sequência de DNA , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Desacopladores/farmacologia
20.
Pediatr Infect Dis J ; 32(6): 675-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23348809

RESUMO

AIM: To test for immunologic noninferiority of antibody responses to Hib and MenC using a 6-in-1 combination vaccine (DTPa-IPV/Hib-MenC-TT) compared with DTPa-IPV-Hib plus MenC-CRM197, before and after a 12-month Hib-MenC-TT booster. METHODS: Pragmatic open-label, randomized, multicenter, UK study. "6-in-1" group received DTPa-IPV/Hib-MenC-TT at 2, 3 and 4 months; control group received DTPa-IPV-Hib at 2, 3 and 4 months and MenC-CRM197 at 3 and 4 months. Both groups received Hib-MenC-TT at 12 months. Concomitant vaccines: pneumococcal conjugate vaccine at 2, 4 and 13 months, and measles, mumps and rubella vaccine at 13 months. RESULTS: One hundred forty-two children were randomized to each group. One hundred children in the "6-in-1" group and 112 control group children completed the study according-to-protocol. One month postprimary immunizations: 100% of "6-in-1" group and 93.3% of control children had anti-polyribosylribitol phosphate (PRP) IgG ≥0.15 µg/mL; 96.2% and 100%, respectively, had rSBA-MenC titers ≥1:8. One month after booster all children met these thresholds, with anti-PRP geometric mean concentrations of 66.7 (53.3; 83.5) in "6-in-1" recipients and 26.9 (20.9; 34.6) in control children (4.4 [3.5; 5.4] and 3.0 [2.2-4.2] postprimary immunizations, respectively,). rSBA-MenC geometric mean titers were 3062.9 (2421.2; 3874.6) and 954.0 (761.3; 1195.5), respectively, postbooster and 393.2 (292.5; 528.7) and 3110.5 (2612; 3704.2) postprimary. CONCLUSION: Noninferiority of DTPa-IPV/Hib-MenC-TT compared with DTPa-IPV/Hib plus MenC-CRM197 was demonstrated. In the "6-in-1" group, lower postprimary and greater postbooster rSBA-MenC geometric mean titers suggest memory B-cell priming may be favored by this vaccine over plasma cell induction. Furthermore, greater immunogenicity of TT conjugates used in both primary and booster vaccines in this group may be important.


Assuntos
Vacina contra Difteria, Tétano e Coqueluche/imunologia , Vacinas Anti-Haemophilus/imunologia , Vacinas Meningocócicas/imunologia , Vacina Antipólio de Vírus Inativado/imunologia , Vacinação/métodos , Anticorpos Antibacterianos/sangue , Vacina contra Difteria, Tétano e Coqueluche/administração & dosagem , Feminino , Vacinas Anti-Haemophilus/administração & dosagem , Humanos , Imunoglobulina G/sangue , Memória Imunológica , Lactente , Masculino , Vacinas Meningocócicas/administração & dosagem , Vacina Antipólio de Vírus Inativado/administração & dosagem , Reino Unido , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA