Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 35: 274-290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38370865

RESUMO

The healing process of critical-sized bone defects urges for a suitable biomineralization environment. However, the unsatisfying repair outcome usually results from a disturbed intricate milieu and the lack of in situ mineralization resources. In this work, we have developed a composite hydrogel that mimics the natural bone healing processes and serves as a seedbed for bone regeneration. The oxidized silk fibroin and fibrin are incorporated as rigid geogrids, and amorphous calcium phosphate (ACP) and platelet-rich plasma serve as the fertilizers and loam, respectively. Encouragingly, the seedbed hydrogel demonstrates excellent mechanical and biomineralization properties as a stable scaffold and promotes vascularized bone regeneration in vivo. Additionally, the seedbed serves a succinate-like function via the PI3K-Akt signaling pathway and subsequently orchestrates the mitochondrial calcium uptake, further converting the exogenous ACP into endogenous ACP. Additionally, the seedbed hydrogel realizes the succession of calcium resources and promotes the evolution of the biotemplate from fibrin to collagen. Therefore, our work has established a novel silk-based hydrogel that functions as an in-situ biomineralization seedbed, providing a new insight for critical-sized bone defect regeneration.

2.
ACS Nano ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330150

RESUMO

The practical efficacy of nanomedicines for treating solid tumors is frequently low, predominantly due to the elevated interstitial pressure within such tumors that obstructs the penetration of nanomedicines. This increased interstitial pressure originates from both liquid and solid stresses related to an undeveloped vascular network and excessive fibroblast proliferation. To specifically resolve the penetration issues of nanomedicines for tumor treatment, this study introduces a holistic "dual-faceted" approach. A treatment platform predicated on the WS2/Pt Schottky heterojunction was adopted, and flexocatalysis technology was used to disintegrate tumor interstitial fluids, thus producing oxygen and reactive oxygen species and effectively mitigating the interstitial fluid pressure. The chemotherapeutic agent curcumin was incorporated to further suppress the activity of cancer-associated fibroblasts, minimize collagen deposition in the extracellular matrix, and alleviate solid stress. Nanomedicines achieve homologous targeting by enveloping the tumor cell membrane. It was found that this multidimensional strategy not only alleviated the high-pressure milieu of the tumor interstitium─which enhanced the efficiency of nanomedicine delivery─but also triggered tumor cell apoptosis via the generated reactive oxygen species and modulated the tumor microenvironment. This, in turn, amplified immune responses, substantially optimizing the therapeutic impacts of nanomedicines.

3.
Nanoscale Horiz ; 9(3): 365-383, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38230559

RESUMO

Precision drug delivery and multimodal synergistic therapy are crucial in treating diverse ailments, such as cancer, tissue damage, and degenerative diseases. Electrodes that emit electric pulses have proven effective in enhancing molecule release and permeability in drug delivery systems. Moreover, the physiological electrical microenvironment plays a vital role in regulating biological functions and triggering action potentials in neural and muscular tissues. Due to their unique noncentrosymmetric structures, many 2D materials exhibit outstanding piezoelectric performance, generating positive and negative charges under mechanical forces. This ability facilitates precise drug targeting and ensures high stimulus responsiveness, thereby controlling cellular destinies. Additionally, the abundant active sites within piezoelectric 2D materials facilitate efficient catalysis through piezochemical coupling, offering multimodal synergistic therapeutic strategies. However, the full potential of piezoelectric 2D nanomaterials in drug delivery system design remains underexplored due to research gaps. In this context, the current applications of piezoelectric 2D materials in disease management are summarized in this review, and the development of drug delivery systems influenced by these materials is forecast.


Assuntos
Nanoestruturas , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Eletricidade , Fenômenos Mecânicos , Sistemas de Liberação de Medicamentos
4.
Adv Healthc Mater ; 13(12): e2304315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38261729

RESUMO

Senile wound healing risks a variety of health complications and makes both economic and psychological burdens on patients greatly. Poor activity of aged dermal fibroblasts (A-FBs) and local disordered immunoreaction in the deep dermis contribute to delayed wound healing. Therefore, the locally complex microenvironment in deep requires additional processing. Herein, a novel double-layer hyaluronic acid methacrylate (HAMA)/polyvinyl alcohol (PVA) microneedle patch (MNP) coated by young fibroblast-derived exosomes (Y-EXOs) (Y-EXOs@HAMA/PVA MNP) is presented for deep drug delivery, aged wound healing and immunoregulation. A spraying and freeze-drying method is applied for keeping the bioactivity of the nanovesicles. An ideal loading of Y-EXOs and enhanced strength for penetration have realized after circulation for times. The Y-EXOs@HAMA/PVA MNP shows an excellent influence on delayed wound healing of aged skin with active A-FBs, more deposition of collagen and less production of IL-17A compared with application of aged fibroblast-derived exosomes (A-EXOs). Moreover, the content microRNAs in Y-EXOs and A-EXOs are sequenced for further study. This study initiatively demonstrates that Y-EXOs have effective function on both anti-aging and anti-inflammation and Y-EXOs@HAMA/PVA MNP is expected as a novel strategy for deep drug delivery for promoting hard wound healing in aged skin in future clinical application.


Assuntos
Exossomos , Fibroblastos , Agulhas , Pele , Cicatrização , Cicatrização/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/química , Animais , Fibroblastos/metabolismo , Humanos , Pele/metabolismo , Imunoterapia/métodos , Ácido Hialurônico/química , Regeneração/efeitos dos fármacos , Camundongos , Álcool de Polivinil/química , Masculino , Envelhecimento da Pele/efeitos dos fármacos , MicroRNAs/metabolismo
5.
Adv Sci (Weinh) ; 10(25): e2302136, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400369

RESUMO

Tissue regeneration is regulated by morphological clues of implants in bone defect repair. Engineered morphology can boost regenerative biocascades that conquer challenges such as material bioinertness and pathological microenvironments. Herein, a correlation between the liver extracellular skeleton morphology and the regenerative signaling, namely hepatocyte growth factor receptor (MET), is found to explain the mystery of rapid liver regeneration. Inspired by this unique structure, a biomimetic morphology is prepared on polyetherketoneketone (PEKK) via femtosecond laser etching and sulfonation. The morphology reproduces MET signaling in macrophages, causing positive immunoregulation and optimized osteogenesis. Moreover, the morphological clue activates an anti-inflammatory reserve (arginase-2) to translocate retrogradely from mitochondria to the cytoplasm due to the difference in spatial binding of heat shock protein 70. This translocation enhances oxidative respiration and complex II activity, reprogramming the metabolism of energy and arginine. The importance of MET signaling and arginase-2 in the anti-inflammatory repair of biomimetic scaffolds is also verified via chemical inhibition and gene knockout. Altogether, this study not only provides a novel biomimetic scaffold for osteoporotic bone defect repair that can simulate regenerative signals, but also reveals the significance and feasibility of strategies to mobilize anti-inflammatory reserves in bone regeneration.


Assuntos
Regeneração Óssea , Inflamação , Fígado , Macrófagos , Osseointegração , Osteoporose , Alicerces Teciduais , Animais , Feminino , Camundongos , Ratos , Respiração Celular , Metabolismo Energético , Inflamação/prevenção & controle , Fígado/citologia , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Alicerces Teciduais/química
6.
Biomater Adv ; 138: 212935, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913256

RESUMO

Parthenolide (PTL), a germacrane sesquiterpene lactone extracted from the "Yin" Chinese traditional herb feverfew, has gained interest due to its lethal effects on tumor cells and its pharmacological effects within traditional Chinese medicine theory. To overcome low, non-targeted accumulation and uncontrolled release of PTL administration, a dual-responsive PTL-liposomes@chitosan@gold nanoshells (PTL-Lips@CS@GNS) system was fabricated. Hyperthermia generated under light irradiation in the near-infrared region via local surface plasmon resonance of gold nanoshells induced photothermal therapy, which also stimulated PTL release due to the liposomes gel-to-liquid crystalline phase transition. Additionally, PTL-Lips@CS@GNS exhibited a pH-responsive release in the acidic tumor microenvironment. Collectively, this study provides a realistic strategy for an effective combination of traditional Chinese medicine and current nanotechnology for tumor therapy.


Assuntos
Antineoplásicos , Hipertermia Induzida , Neoplasias , Antineoplásicos/farmacologia , Ouro/química , Humanos , Lipossomos/química , Fototerapia , Sesquiterpenos , Microambiente Tumoral
7.
Biofabrication ; 13(3)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33967033

RESUMO

Stem cells play critical roles in tissue repair and regeneration. The construction of stem cell-derived microtissue is a promising strategy for transplanting cells into defects to improve tissue regeneration efficiency. However, rapidly constructing larger microtissues and promoting vascularization to ensure the cellular nutrient supply remain major challenges. Here, we have developed a magnetic device to rapidly construct and regulate millimeter-scale microtissues derived from magnetic nanoparticle-labeled cells. When the microtissue was cultured under a specific magnetic field, the shape of the microtissue could be changed. Importantly, cell proliferation was maintained, and angiogenesis was activated in the process of microtissue deformation. We developed a magnetic control method to treat microtissue, and the implanted microtissue showed excellent vascularizationin vivo. In brief, this magnetic control technology provides a promising strategy for vascularized regenerative medicine.


Assuntos
Fenômenos Magnéticos , Engenharia Tecidual , Proliferação de Células , Células-Tronco
8.
Theranostics ; 9(10): 2897-2909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244931

RESUMO

Inaccessibility of deep-seated malignant cells in the central region of tumors and uncontrollable tumor recurrence represent a significant challenge for conventional synergistic cancer therapy. Herein, we designed a novel nanoplatform based on hierarchical drug release for deep cascade cancer therapy including localized photothermal therapy, systematic chemotherapy, and elicited immune responses. Methods: The first-step chemotherapy could be carried out by polydopamine (PDA) releasing doxorubicin (DOX) in the specific microenvironment of lysosomes (pH 5.5). The branched gold nanoshells and PDA converted the light to heat efficiently to accomplish the second-step photothermal therapy and collapsed biomimetic vesicles (BVs) to release paclitaxel (PTX), which promoted the third-step of chemotherapy and triggered immune responses. Results: After 10 days of treatment, there were no obvious residual tumors in tumor-bearing mice. Significantly, 10 days after stopping treatment, mice in the drug immune-therapeutic group showed little tumor recurrence (1.5 times) compared to substantial recurrence (20 times) in the conventional treatment group. Conclusion: The hierarchical drug release and cascade therapeutic modality enhance the penetration of drugs deep into the tumor tissue and effectively inhibit recurrence. This cascade therapeutic modality provides a novel approach for more effective cancer therapy.


Assuntos
Carcinoma/terapia , Sistemas de Liberação de Medicamentos , Tratamento Farmacológico/métodos , Hipertermia Induzida/métodos , Imunoterapia/métodos , Nanocompostos/administração & dosagem , Fototerapia/métodos , Animais , Antineoplásicos/administração & dosagem , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Ouro/administração & dosagem , Células HeLa , Humanos , Fatores Imunológicos/administração & dosagem , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Paclitaxel/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Transplante Heterólogo , Resultado do Tratamento
9.
Nanomedicine ; 18: 303-314, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30326275

RESUMO

Development of combined chemo-photothermal nanoplatform is of great interest for enhancing antitumor efficacy. Herein, a multifunctional drug delivery system was synthesized based on gold-nanobranched coated betulinic acid liposomes (GNBS-BA-Lips) for chemo-photothermal synergistic therapy. In this system, GNBS-BA-Lips exhibited broad near-infrared (NIR) absorption, preferable photothermal response and good photostability under NIR irradiation. Importantly, the gold-nanobranched nanostructure possessed high photothermal conversion efficiency (η = 55.7%), and the temperature change (ΔT) reached 43.2 °C after laser irradiation for 5 min. Upon NIR irradiation, the nanocarriers apparently endowed higher cell uptake, resulting in an enhanced intracellular drug accumulation. Furthermore, the tumor growth inhibition ratio achieved from chemo-photothermal therapy of GNBS-BA-Lips was 86.9 ±â€¯1.1%, which was higher than that of the chemotherapy or photothermal therapy alone, showing an outstanding synergistic anticancer effect. Our data suggested that the nanoplatform should be considered as a critical platform in the development of cancer multi-mode therapies.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Ouro/química , Hipertermia Induzida , Nanoconchas/química , Fototerapia , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Lipossomos , Nanoconchas/ultraestrutura , Triterpenos Pentacíclicos , Temperatura , Triterpenos/farmacologia , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA