Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 201: 105847, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685209

RESUMO

Thiram, a widely used organic pesticide in agriculture, exhibits both bactericidal and insecticidal effects. However, prolonged exposure to thiram has been linked to bone deformities and cartilage damage, contributing to the development of tibial dyschondroplasia (TD) in broilers and posing a significant threat to global agricultural production. TD, a prevalent nutritional metabolic disease, manifests as clinical symptoms like unstable standing, claudication, and sluggish movement in affected broilers. In recent years, there has been growing recognition of the regulatory role of long non-coding RNA (lncRNA) in tibial cartilage formation among broilers through diverse signaling pathways. This study employs in vitro experimental models, growth performance analysis, and clinical observation to assess broilers' susceptibility to thiram pollution. Transcriptome sequencing analysis revealed a significant elevation in the expression of lncRNA MSTRG.74.1 in both the con group and the thiram-induced in vitro group. The results showed that lncRNA MSTRG.74.1 plays a pivotal role in influencing the proliferation and abnormal differentiation of chondrocytes. This regulation occurs through the negative modulation of apoptotic genes, including Bax, Cytc, Bcl2, Apaf1, and Caspase3, along with genes Atg5, Beclin1, LC3b, and protein p62. Moreover, the overexpression of lncRNA MSTRG.74.1 was found to regulate broiler chondrocyte development by upregulating BNIP3. In summary, this research sheds light on thiram-induced abnormal chondrocyte proliferation in TD broilers, emphasizing the significant regulatory role of the lncRNA MSTRG.74.1-BNIP3 axis, which will contribute to our understanding of the molecular mechanisms underlying TD development in broilers exposed to thiram.


Assuntos
Proliferação de Células , Galinhas , Condrócitos , RNA Longo não Codificante , Tiram , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tiram/toxicidade , Proliferação de Células/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Osteocondrodisplasias/patologia , Apoptose/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 254: 114731, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905849

RESUMO

Microbes play a crucial role in maintaining health by aiding in digestion, regulating the immune system, producing essential vitamins, and preventing the colonization of harmful bacteria. The stability of the microbiota is, therefore, necessary for overall well-being. However, several environmental factors can negatively affect the microbiota, including exposure to industrial waste, i.e., chemicals, heavy metals, and other pollutants. Over the past few decades, industries have grown significantly, but the wastewater from those industries has seriously harmed the environment and the health of living beings both locally and globally. The current study investigated the effects of salt-contaminated water exposure on gut microbiota in chickens. According to our findings, amplicon sequencing showed 453 OTUs across control and salt-contaminated water exposure groups. Proteobacteria, Firmicutes, and Actinobacteriota were the most dominant phyla in the chickens regardless of treatment. However, exposure to salt-contaminated water resulted in a remarkable decline in gut microbial diversity. While, the beta diversity revealed substantial differences in major gut microbiota components. Moroever, microbial taxonomic investigation indicated that the proportions of one bacterial phylum and nineteen bacterial genera significantly decreased. Also, the levels of one bacterial phylum and thirty three bacterial genera markedly increased under salt-contaminated water exposure, which indicates a disruption in gut microbial homeostasis. Hence the current study provides a basis to explore the effects of salt-contaminated water exposure on the health of vertebrate species.


Assuntos
Microbioma Gastrointestinal , Animais , Galinhas/microbiologia , Disbiose , Bactérias/genética , Cloreto de Sódio , Cloreto de Sódio na Dieta , Água , RNA Ribossômico 16S
3.
Sci Total Environ ; 856(Pt 1): 159089, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174690

RESUMO

The widespread presence and accumulation of microplastics (MPs) in organisms has led to their recognition as a major global ecological issue. There is a lot of data on how MPs affect the physiology and behavior of aquatic species, but the effects of MPs on poultry are less understood. Therefore, we aimed to explore the adverse effects and mechanisms of MPs exposure to chicken health. Results indicated that MPs exposure decreased growth performance and antioxidant ability and impaired chickens' intestine, liver, kidney, and spleen. Additionally, the gut microbiota in chickens exposed to MPs showed a significant decrease in alpha diversity, accompanied by significant alternations in taxonomic compositions. Microbial taxonomic investigation indicated that exposure to MPs resulted in a significant increase in the relative proportions of 11 genera and a distinct decline in the relative percentages of 3 phyla and 52 genera. Among decreased bacterial taxa, 11 genera even couldn't be detected in the gut microbiota of chickens exposed to MPs. Metabolomics analysis indicated that 2561 (1190 up-regulated, 1371 down-regulated) differential metabolites were identified, mainly involved in 5 metabolic pathways, including D-amino acid metabolism, ABC transporters, vitamin digestion and absorption, mineral absorption, and histidine metabolism. Taken together, this study indicated that MPs exposure resulted in adverse health outcomes for chickens by disturbing gut microbial homeostasis and intestinal metabolism. This study also provided motivation for environmental agencies worldwide to regulate the application and disposal of plastic products and decrease environmental contamination.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Animais , Plásticos/toxicidade , Galinhas , Antioxidantes/farmacologia , Homeostase
4.
Artigo em Inglês | MEDLINE | ID: mdl-36536234

RESUMO

The Tibetan livestock sector is now ailing from many infectious ailments brought on by harmful microorganisms. Therefore, this research aimed to assess the probiotic potential and safety of Bacillus amyloliquefaciens isolated from yaks in the Tibet area to provide upper-edge strain resources for probiotics development. The four strains isolated from the intestine of yaks had been identified as Bacillus amyloliquefaciens after the 16S rRNA sequence. The ethanol, bile salt, and acid tolerance revealed that the isolates had significant tolerance levels. The antibiotics susceptibility assay showed that the strains were sensitive to commonly used antibiotics, while the antibacterial assay prevented the isolates from outperforming five harmful bacteria in terms of antibacterial potency. Moreover, it was evident that strain BA5 had the strongest activity to scavenge hydroxyl radical and reduce power. According to the animal experiment, no apparent pathological change was observed in intestinal tissue sections. Furthermore, the strain had a positive effect on promoting the development of jejunal villi referred to its safety. Therefore, more research is required into the bacteriostatic and antioxidant capabilities of isolates in animal production.

5.
Front Cell Infect Microbiol ; 12: 805481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402298

RESUMO

Short-chain fatty acids (SCFA) are principal nutrient substrates of intestinal epithelial cells that regulate the epithelial barrier in yaks. Until now, metagenomics sequencing has not been reported in diarrheal yaks. Scarce information is available regarding the levels of fecal SCFA and diarrhea in yaks. So, our study aims to identify the potential pathogens that cause the emerging diarrhea and explore the potential relationship of short-chain fatty acids in this issue. We estimated diarrhea rate in yaks after collecting an equal number of fecal samples from affected animals. Metagenomics sequencing and quantitative analysis of SCFA were performed, which revealed 15%-25% and 5%-10% prevalence of diarrhea in yak's calves and adults, respectively. Violin box plot also showed a higher degree of dispersion in gene abundance distribution of diarrheal yaks, as compared to normal yaks. We found 366,163 significant differential abundance genes in diarrheal yaks, with 141,305 upregulated and 224,858 downregulated genes compared with normal yaks via DESeq analysis. Metagenomics binning analysis indicated the higher significance of bin 33 (Bacteroidales) (p < 0.05) in diarrheal animals, while bin 10 (p < 0.0001), bin 30 (Clostridiales) (p < 0.05), bin 51 (Lactobacillales) (p < 0.05), bin 8 (Lachnospiraceae) (p < 0.05), and bin 47 (Bacteria) (p < 0.05) were significantly higher in normal yaks. At different levels, a significant difference in phylum (n = 4), class (n = 8), oder (n = 8), family (n = 16), genus (n = 17), and species (n = 30) was noticed, respectively. Compared with healthy yaks, acetic acid (p < 0.01), propionic acid (p < 0.01), butyric acid (p < 0.01), isobutyric acid (p < 0.01), isovaleric acid (p < 0.05), and caproic acid (p < 0.01) were all observed significantly at a lower rate in diarrheal yaks. In conclusion, besides the increased Staphylococcus aureus, Babesia ovata, Anaplasma phagocytophilum, Bacteroides fluxus, viruses, Klebsiella pneumonia, and inflammation-related bacteria, the decrease of SCFA caused by the imbalance of intestinal microbiota was potentially observed in diarrheal yaks.


Assuntos
Microbioma Gastrointestinal , Metagenômica , Animais , Bactérias/genética , Bovinos , Clostridiales , Diarreia/microbiologia , Ácidos Graxos Voláteis , Fezes
6.
Ecotoxicol Environ Saf ; 237: 113532, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472558

RESUMO

Industrial production, ore smelting and sewage disposal plant can discharge large amounts of heavy metals every year, which may contaminate soil, water and air, posing a great threat to ecological environment and animal production. Hexavalent chromium [Cr (VI)], a recognized metallic contaminant, has been shown to impair kidney, liver and gastrointestinal tract of many species, but little is known about the gut microbial characteristics of chickens exposed to Cr (VI). Herein, this study characterized the gut microbial alternations of chickens exposed to Cr (VI). Results indicated that the gut microbial alpha-diversity in chickens exposed to Cr (VI) decreased significantly, accompanied by a distinct shifts in taxonomic composition. Microbial taxonomic analysis demonstrated that the preponderant phyla (Firmicutes, Bacteroidetes, Proteobacteria and Epsilonbacteraeota) were the same in both groups, but different in types and relative abundances of dominant genera. Moreover, some bacterial taxa including 2 phyla and 47 genera significantly decreased, whereas 3 phyla and 17 genera significantly increased during Cr (VI) exposure. Among decreased taxa, 9 genera (Coprobacter, Ruminococcus_1, Faecalicoccus, Eubacterium_nodatum_group, Parasutterella, Slackia, Barnesiella, Family_XIII_UCG-001 and Collinsella) even cannot be detected. In conclusion, this study revealed that Cr (VI) exposure dramatically decrased the gut microbial diversity and altered microbial composition of chickens. Additionally, this study also provided a theoretical basis for relieving Cr (VI) poisoning from the perspective of gut microbiota.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Bacteroidetes , Cromo/toxicidade , Firmicutes , Homeostase
7.
Microb Pathog ; 162: 105212, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597776

RESUMO

Lactobacillus fermentum (L. fermentum) YLF016 is a well-characterized probiotic with several favorable characteristics. This study aimed to analyze the probiotic characteristics of L. fermentum and uncover the genes implicated in its potential probiotic ability on the base of its genomics features. The complete genome of L. fermentum YLF016 was found to have a circular chromosome of 2,094,354 bp, and 51.46% G + C content without any plasmid. Its chromosome contained 2,130 predicted protein-encoding genes, 58 tRNA, and 15 rRNA-encoding genes. Also, it was found to have many other probiotic properties, such as a high survival rate in the gastrointestinal tract with strong adherence to intestinal cells, antibacterial activity against pathogens, and antioxidant activity. Moreover, the genome sequence analysis demonstrated specific genes coding for carbon metabolism pathway, genetic adaption, stress resistance, and adhesive ability. Further analysis revealed its non-hemolytic activity and its non-functional ability of virulence factors. In conclusion, L. fermentum YLF016 possesses many valuable probiotic properties that refer to its potential probiotic ability.


Assuntos
Limosilactobacillus fermentum , Probióticos , Antibacterianos , Trato Gastrointestinal , Limosilactobacillus fermentum/genética
8.
Environ Sci Pollut Res Int ; 29(1): 1134-1143, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34347242

RESUMO

NaCl is the main component of freshwater salinization. High NaCl concentration in drinking water can cause pulmonary hypertension syndrome (PHS) and kidney damage in broilers. To explore the effect of NaCl in drinking water on broilers' kidneys, this study divided 80 chickens into four groups. With the control group fed with pure water, broiler chickens were fed with fresh water (FW, NaCl 1 g/L), low salt-contaminated water (L-SCW, NaCl 2.5 g/L), and high salt-contaminated water (H-SCW, NaCl 5 g/L). The results show that ascites heart index (AHI) and hematocrit (HCT) of broilers increase in L-SCW and H-SCW, the serum blood urea nitrogen and creatinine of broilers increase significantly, the kidney index increases, the kidney sections show vacuolar degeneration and fibrotic degeneration, and the TUNEL results show that the kidneys possess obvious apoptosis. In addition, the detection of RAAS-related genes (AGT gene in the liver, REN in the kidney, ACE in the lung) demonstrates that after using salt-contaminated water, the transcription levels of AGT, REN, and ACE rise significantly, and the concentration of angiotensin II (Ang II) also increases significantly. In order to verify the effect of Ang II on broiler kidneys, this research used exogenous Ang II to treat chicken embryonic kidney (CEK) cells. The results show that the cell activity of CEK decreased with the increase of the concentration of exogenous Ang II. Meanwhile, the flow cytometry assay shows that Ang II could promote the apoptosis of CEK cells. These results indicate that the salt-contaminated water can aggravate PHS and cause kidney damage. The mechanism may be related to the increase of Ang II.


Assuntos
Angiotensina II/sangue , Hipertensão Pulmonar , Rim/fisiopatologia , Cloreto de Sódio/efeitos adversos , Animais , Pressão Sanguínea , Galinhas , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/veterinária , Água
9.
Front Microbiol ; 13: 1064657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713189

RESUMO

Accumulating evidence indicated that oxidative stress is closely related to inflammation and the progression of multiple chronic diseases, which seriously threaten the host health. Currently, multiple plant-derived polysaccharides have been demonstrated to ameliorate the negative effects of oxidative stress on the host, but the potential protective effect of radix paeoniae alba polysaccharide (RPAP) on host have not been well characterized. Here, we investigated whether different doses of RPAP administration could alleviate lipopolysaccharide (LPS)-induced intestinal injury and gut microbial dysbiosis in mice. Results indicated that RPAP administration effectively alleviated LPS-induced intestinal damage in dose dependent. Additionally, amplicon sequencing showed that RPAP administration reversed the significant decrease in gut microbial diversity caused by LPS exposure and restored the alpha-diversity indices to normal levels. Microbial taxonomic investigation also indicated that LPS exposure resulted in significant changes in the gut microbial composition, characterized by a decrease in the abundances of beneficial bacteria (Lactobacillus, Alistipes, Bacillus, Rikenellaceae_RC9_gut_group, etc.) and an increase in the contents of pathogenic bacteria (Klebsiella, Helicobacter, Enterococcus, etc.). However, RPAP administration, especially in high doses, could improve the composition of the gut microbiota by altering the abundance of some bacteria. Taken together, this study demonstrated that RPAP administration could ameliorate LPS-induced intestinal injury by regulating gut microbiota. Meanwhile, this also provides the basis for the popularization and application of RPAP and alleviating oxidative stress from the perspective of gut microbiota.

10.
Front Vet Sci ; 9: 1099150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713867

RESUMO

Probiotics have attracted attention due to their multiple health benefits to the host. Yaks inhabiting the Tibetan plateau exhibit excellent disease resistance and tolerance, which may be associated with their inner probiotics. Currently, research on probiotics mainly focuses on their positive effects on the host, but information regarding their genome remains unclear. To reveal the potential functional genes of Bacillus subtilis isolated from yaks, we sequenced its whole genome. Results indicated that the genomic length of Bacillus subtilis was 866,044,638 bp, with 4,429 coding genes. The genome of this bacteria was composed of one chromosome and one plasmid with lengths of 4,214,774 and 54,527 bp, respectively. Moreover, Bacillus subtilis contained 86 tRNAs, 27 rRNAs (9 16S_rRNA, 9 23S_rRNA, and 9 5S_rRNA), and 114 other ncRNA. KEGG annotation indicated that most genes in Bacillus subtilis were associated with biosynthesis of amino acids, carbon metabolism, purine metabolism, pyrimidine metabolism, and ABC transporters. GO annotation demonstrated that most genes in Bacillus subtilis were related to nucleic acid binding transcription factor activity, transporter activity, antioxidant activity, and biological adhesion. EggNOG uncovered that most genes in Bacillus subtilis were related to energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism. CAZy annotation found glycoside hydrolases (33.65%), glycosyl transferases (22.11%), polysaccharide lyases (3.84%), carbohydrate esterases (14.42%), auxiliary activities (3.36%), and carbohydrate-binding modules (22.59%). In conclusion, this study investigated the genome and genetic properties of Bacillus subtilis derived from yaks, which contributed to understanding the potential prebiotic mechanism of probiotics from the genetic perspective.

11.
Ecotoxicol Environ Saf ; 227: 112871, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34649138

RESUMO

Hexavalent chromium [Cr (VI)] is a hazardous heavy metal that pollutes soil, water and crops. Moreover, its prolonged exposure can harm the gastrointestinal system, liver and respiratory tract in different species, but knowledge regarding Cr (VI) influence on gut microbiota in chickens remains scarce. Therefore, this study was performed to investigate the impact of Cr (VI) on gut microbiota in chickens. Results revealed that the gut microbiota in Cr (VI)-induced chickens exhibited a distinct reduction in alpha diversity, accompanied by significant shifts in microbial composition. Specifically, Firmicutes and Bacteroidetes were the most dominant phyla in the control chickens, whereas Firmicutes and Actinobacteria were observed to be predominant in the Cr (VI)-induced populations. Moreover, the types and relative abundances of predominant bacterial genus in control and Cr (VI)-induced chickens were also different. Bacterial taxonomic analysis revealed that the relative abundances of 3 phyla and 7 genera obviously increased, whereas 8 phyla and 30 genera dramatically decreased during Cr (VI) induction. Among them, 1 phylum (Deferribacteres) and 5 genera (Butyricicoccus, Butyricimonas, Intestinimonas, Lachnospiraceae_FCS020_group and Ruminococcaceae_V9D2013_group) even could not be found in the gut microbial community of Cr (VI)-induced chickens. Taken together, our study indicated that the long-term exposure to Cr (VI) dramatically alter the gut microbial diversity and composition in chickens. Notably, it represents a breakthrough in understanding the impact of Cr (VI) on the intestinal microbiota of chickens.


Assuntos
Microbioma Gastrointestinal , Animais , Galinhas , Cromo/toxicidade , Disbiose
12.
Front Microbiol ; 12: 712092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475863

RESUMO

Gut microbiota has been demonstrated to be associated with multiple gastrointestinal diseases, but information regarding the gut microbial alternations in diarrheic giraffe remains scarce. Here, 16S rDNA and ITS gene amplicon sequencing were conducted to investigate the gut microbial composition and variability in diarrheic giraffes. Results demonstrated that Firmicutes and Proteobacteria were the most dominant phyla in the gut bacterial community, whereas Ascomycota and Basidiomycota were observed to be predominant in the gut fungal community regardless of health status. However, the species and relative abundance of preponderant bacterial and fungal genera in healthy and diarrheic giraffes were different. In contrast to the relatively stabilized gut fungal community, gut bacterial community displayed a significant decrease in the alpha diversity, accompanied by distinct changes in taxonomic compositions. Bacterial taxonomic analysis revealed that the relative abundances of eight phyla and 12 genera obviously increased, whereas the relative abundances of two phyla and eight genera dramatically decreased during diarrhea. Moreover, the relative richness of five fungal genera significantly increased, whereas the relative richness of seven fungal genera significantly declined in diarrheic giraffes. Taken together, this study demonstrated that diarrhea could cause significant alternations in the gut microbial composition of giraffes, and the changes in the gut bacterial community were more significant than those in the gut fungal community. Additionally, investigating the gut microbial characteristics of giraffes in different health states is beneficial to provide a theoretical basis for establishing a prevention and treatment system for diarrhea from the gut microbial perspective.

13.
BMC Microbiol ; 21(1): 204, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217216

RESUMO

BACKGROUND: Diarrhea is an important ailment limiting the production of the Tibetan pig industry. Dynamic balance of the intestinal microbiota is important for the physiology of the animal. The objective of this work was to study fungal diversity in the feces of early weaning Tibetan piglets in different health conditions. RESULTS: In the present study, we performed high-throughput sequencing to characterize the fungal microbial diversity in healthy, diarrheal and treated Tibetan piglets at the Tibet Autonomous Region of the People's Republic of China. The four alpha diversity indices (Chao1, ACE, Shannon and Simpson) revealed no significant differences in the richness across the different groups (P > 0.05). In all samples, the predominant fungal phyla were Ascomycota, Basidiomycota and Rozellomycota. Moreover, the healthy piglets showed a higher abundance of Ascomycota than the treated ones with a decreased level of Basidiomycota. One phylum (Rozellomycota) showed higher abundance in the diarrheal piglets than in the treated. At genus level, compared with that to the healthy group, the proportion of Derxomyces and Lecanicillium decreased, whereas that of Cortinarius and Kazachstania increased in the diarrheal group. The relative abundances of Derxomyces, Phyllozyma and Hydnum were higher in treated piglets than in the diarrheal ones. CONCLUSIONS: A decreased relative abundance of beneficial fungi (e.g. Derxomyces and Lecanicillium) may cause diarrhea in the early-weaned Tibetan piglets. Addition of probiotics into the feed may prevent diarrhea at this stage. This study presented the fungal diversity in healthy, diarrheal and treated early-weaned Tibetan piglets.


Assuntos
Biodiversidade , Diarreia/microbiologia , Fungos/classificação , Fungos/genética , Microbioma Gastrointestinal/genética , Doenças dos Suínos/microbiologia , Animais , Fezes/microbiologia , Suínos , Tibet
14.
Microb Pathog ; 155: 104900, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33894292

RESUMO

Mounting evidence revealed the importance of gut microbiota in host metabolism, immunity and physiology, and health. Yimeng black goats (YBGs) mainly distributed in Shandong province of China, displayed a complicated intestinal microecosystem, but studies of its gut microbiota are still insufficient to report. Therefore, this study was performed with an objective to characterize the intestinal microbial community structure and diversity in the small intestine (duodenum, jejunum and ileum) and cecum of YBGs and investigated the variability of gut microbiota of different intestinal segments. A total of 12 intestinal samples were collected from YBGs for high-throughput sequencing analysis based on V3-V4 variable region of 16S rRNA genes. Our results revealed alterations in gut microbial composition with obvious differences in relative abundance between the different intestinal segments. Additionally, small intestine including duodenum, jejunum and ileum not only displayed higher species abundance and diversity than cecum but also showed a significant difference among the main components of gut microbiota based on the analytical results of alpha and beta diversities. At the phylum level, Firmicutes and Proteobacteria were the most preponderant phyla in all the samples regardless of intestinal sites. Moreover, the microbiota in small intestine was significantly different from cecum, which were characterized by the higher relative abundance of Butyrivibrio_2, Megasphaera, Halomonas, Delftia, Hydrogenophaga, Limnobacter, Pseudoxanthomonas, Novosphingobium, Janibacter and Erythrobacter, whereas the levels of Butyricicoccus, unidentified_Lachnospiraceae, Fusicatenibacter, Akkermansia, Ruminococcaceae_NK4A214_group and Lactobacillus were lower. Overall, this study first characterized the profile of gut microbiota composition in different intestinal sites and provide better insight into intestinal microbial community structure and diversity of YBGs.


Assuntos
Microbioma Gastrointestinal , Animais , China , Cabras , RNA Ribossômico 16S/genética
15.
Ecotoxicol Environ Saf ; 217: 112225, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864983

RESUMO

Long-term exposure to excessive fluoride causes chronic damage in the body tissues and could lead to skeletal and dental fluorosis. Cartilage damage caused by excessive fluoride intake has gained wide attention, but how fluoride accumulation blocks the development of chondrocytes is still unclear. Here, we report a negative correlation between the length and growth plate width after NaF treatments via apoptosis and autophagy, with shrinkage of cells, nuclear retraction, dissolution of chondrocytes. Whereas, fluoride exposure had no significant effect on the number and distribution of the osteoclasts which were well aligned. More importantly, fluoride exposure induced apoptosis of tibial bone through CytC/Bcl-2/P53 pathways via targeting Caspase3, Caspase9, Bak1, and Bax expressions. Meanwhile, the Beclin1, mTOR, Pakin, Pink, and p62 were elevated in NaF treatment group, which indicated that long-term excessive fluoride triggered the autophagy in the tibial bone and produced the chondrocyte injury. Altogether, fluoride exposure induced the chondrocyte injury by regulating the autophagy and apoptosis in the tibial bone of ducks, which demonstrates that fluoride exposure is a risk factor for cartilage development. These findings revealed the essential role of CytC/Bcl-2/P53 pathways in long-term exposure to fluoride pollution and block the development of chondrocytes in ducks, and CytC/Bcl-2/P53 can be targeted to prevent fluoride induced chondrocyte injury.


Assuntos
Condrócitos/fisiologia , Patos/fisiologia , Fluoretos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Condrócitos/efeitos dos fármacos , Condrogênese , Fluoretos/metabolismo , Lâmina de Crescimento
16.
Chemosphere ; 277: 130222, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33794430

RESUMO

Fluorine (F) and its compounds produced from industrial production and coal combustion can cause air, water and soil contamination, which can accumulate in animals, plants and humans via food chain threatening public health. Fluoride exposure affects liver, kidney, gastrointestinal and reproductive system in humans and animals. Literature regarding fluoride influence on intestinal structure and microbiota composition in ducks is scarce. This study was designed to investigate these effects by using simple and electron microscopy and 16S rRNA sequencing techniques. Results indicated an impaired structure with reduced relative distribution of goblet cells in the fluoride exposed group. Moreover, the gut microbiota showed a significant decrease in alpha diversity. Proteobacteria, Firmicutes and Bacteroidetes were the most abundant phyla in both control and fluoride-exposed groups. Specifically, fluoride exposure resulted in a significant decrease in the relative abundance of 9 bacterial phyla and 15 bacterial genera. Among them, 4 phyla (Latescibacteria, Dependentiae, Zixibacteria and Fibrobacteres) and 4 genera (Thauera, Hydrogenophaga, Reyranella and Arenimonas) weren't even detectable in the gut microbiota of the ducks. In summary, higher fluoride exposure can significantly damage the intestinal structure and gut microbial composition in ducks.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Patos , Fluoretos/toxicidade , Humanos , RNA Ribossômico 16S/genética
17.
Microb Cell Fact ; 20(1): 78, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789672

RESUMO

BACKGROUND: Colonization of intestinal microbiota in ruminant during the early life is important to host health, metabolism and immunity. Accumulating evidence revealed the ameliorative effect of milk replacer administration in the gut microbial development of early-weaned ruminants. Yimeng black goats (YBGs) inhabiting Shandong, China show a complex intestinal microbial ecosystem, but studies of their gut microbiota are still insufficient to report. Here, this study was performed to investigate how the gut microbiota develops in weaned YBGs with the effect of age and milk replacer. RESULTS: Results indicated that both age and milk replacer were important factors to change the gut microbiota of YBGs. Although the alpha diversity of gut microbiota did not change with the age of YBGs, the taxonomic compositions significantly changed. The relative abundance of some beneficial bacteria such as Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, Eubacterium and Barnesiella significantly decreased and subsequently increase with age, which contributes to maintain the stability of intestinal environment and realize the diversity of intestinal functions. The relative abundance of Porphyromonas, Brevundimonas, Flavobacterium, Stenotrophomonas, Propionibacterium, Acinetobacter, Enterococcus and Clostridium belong to pathogenic bacteria in milk replacer-treated YBGs was significantly decreased. Additionally, some beneficial bacteria such as Ruminococcus, Ruminococcaceae, Christensenellaceae and Ruminiclostridium also display a trend of decreasing first followed by gradually increasing. CONCLUSIONS: This study first revealed the gut bacterial community alterations in YBGs with the effect of age and milk replacer. This study also characterized the gut microbial distribution in YBGs with different ages and provided better insight into microbial population structure and diversity of YBGs. Moreover, milk replacer may serve as a good applicant for improving gut microbial development in early-weaned YBGs.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Substitutos do Leite/administração & dosagem , Leite , Ração Animal/análise , Animais , Animais Recém-Nascidos , Bactérias/classificação , China , Fezes/microbiologia , Cabras , RNA Ribossômico 16S , Desmame
18.
Ecotoxicol Environ Saf ; 213: 112059, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647747

RESUMO

Tibial dyschondroplasia (TD) is a metabolic disease of young poultry that affects bone andcartilage's growth. It mostly occurs in broilers due to thiram toxicity in the feed. In this disease, tibial cartilage is not yet ripe for ossification, but it also results in lameness, death, and moral convictions of commercial poultry due to numerous apoptotic changes on cell level. These changes serve a cardinal role in this situation. Many potential problems indicate that chlorogenic acid (CGA) performs an extensive role in controlling apoptosis's perception. However, the actual role of CGA in TD affected chondrocytes in-vitro is still unidentified. The current study investigates the imperceptible insight of CGA on chondrocyte's apoptosis via B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x-protein (Bax), and Caspase-3 with CD147 signalling. The expression of these markers was investigated by Immunofluorescence, western blot analysis, and reverse transcription-quantitative polymerase chain (RT-qPCR). Chondrocytes from the growth plate of tibia were isolated, cultured, and processed. A sub-lethal thiram (2.5 µg/mL) was used to induce cytotoxicity and then treated with an optimum dose (40 µg/ mL) of CGA. According to the results, thiram distorted chondrocyte cells with enhanced apoptotic rate. But, in case of CGA, high expression of CD147 enhanced cell viability of chondrocytes, accompanied by downregulation of Bax/Caspase-3 signalling with the upregulation of Bcl-2. The first possibility has ruled out in the present study by the observation that the cells apoptosis marker, Caspase-3 showed a significant change in CD147 overexpressing cells. Conversely, immunodepletion of CD147 with enhanced cleavage of Caspase-3, indicating the activation of apoptosis in chondrocytes cells. Therefore, these findings suggest a novel insight about CD147 in thiram induced TD about the regulation of Bcl-2/Bax/Caspase-3 apoptosis-signalling axis.


Assuntos
Basigina/metabolismo , Fungicidas Industriais/toxicidade , Tiram/toxicidade , Animais , Apoptose , Caspase 2 , Caspase 3/metabolismo , Diferenciação Celular , Sobrevivência Celular , Galinhas/metabolismo , Ácido Clorogênico , Condrócitos/metabolismo , Cisteína Endopeptidases , Lâmina de Crescimento/patologia , Osteocondrodisplasias/tratamento farmacológico , Tíbia/patologia , Regulação para Cima , Proteína X Associada a bcl-2/metabolismo
19.
J Equine Vet Sci ; 96: 103312, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349402

RESUMO

The objective of the present study was to evaluate the probiotic properties, security and antibacterial ability in vivo of isolated strains from healthy equine. In the present study, two Pediococcus acidilactici (P1 and P2) and two Lactobacillus equi (L1 and L2) were isolated. All isolates were died when exposed to pH 2.0 for 3 hours but survived at pH 3.0 and pH 4.0 with differential survival rate, and there is a higher survival rate at pH 4.0. Similarly, the isolates showed different tolerance to bile. The viable bacteria count was sustained at high levels in a tolerance test with artificial gastrointestinal fluid. The isolates survived and grew at temperatures between 37 and 55°C but died at 65°C. Four strains exhibited inhibitory activity against pathogens, including Salmonella typhimurium (CVCC542), Escherichia coli (C83902), Staphylococcus aureus (BNCC186335), and Pasteurella multocida (clinical isolate). These isolates exhibited differential antibiotic susceptibility. In safety trials, all isolates were γ-hemolytic, and the oral toxicity of strains P1 (gavaged with 1 × 109 CFU/day) and L1 (gavaged with 1 × 109 CFU/day) were analyzed in mice. There were no effects on the overall health status of mice. There were no prominent differences in the incidence of bacteria translocation to blood, liver, and spleen. Mice gavaged with Pediococcus acidilactici P1 (1 × 108 CFU/day) or Lactobacillus equi L1 (1 × 108 CFU/day) as prevention showed lower rates of diarrhea and mortality after being challenged with Salmonella typhimurium (4 × 106 CFU signal dose, 0.1 mL by intragastric gavage). The results indicate that the isolated strains could act as potential probiotics, providing a new way to reduce salmonella infection, which merit future application studies.


Assuntos
Doenças dos Cavalos , Probióticos , Doenças dos Roedores , Infecções por Salmonella , Animais , Nível de Saúde , Cavalos , Ácido Láctico , Lactobacillus , Camundongos , Probióticos/uso terapêutico
20.
Genes (Basel) ; 11(12)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371298

RESUMO

Probiotic bacteria are receiving increased attention due to the potential benefits to their hosts. Plateau yaks have resistance against diseases and stress, which is potentially related to their inner probiotics. To uncover the potential functional genes of yak probiotics, we sequenced the whole genome of Lactobacillus sakei (L. sakei). The results showed that the genome length of L. sakei was 1.99 Mbp, with 1943 protein coding genes (21 rRNA, 65 tRNA, and 1 tmRNA). There were three plasmids found in this bacteria, with 88 protein coding genes. EggNOG annotation uncovered that the L. sakei genes were found to belong to J (translation, ribosomal structure, and biogenesis), L (replication, recombination, and repair), G (carbohydrate transport and metabolism), and K (transcription). GO annotation showed that most of the L. sakei genes were related to cellular processes, metabolic processes, biological regulation, localization, response to stimulus, and organization or biogenesis of cellular components. CAZy annotation found that there were 123 CAZys in the L. sakei genome, with glycosyl transferases and glycoside hydrolases. Our results revealed the genome characteristics of L. sakei, which may give insight into the future employment of this probiotic bacterium for its functional benefits.


Assuntos
Bovinos/microbiologia , Genoma Bacteriano , Latilactobacillus sakei/genética , Probióticos , Aclimatação , Altitude , Animais , Bovinos/fisiologia , DNA Bacteriano/genética , Fezes/microbiologia , Latilactobacillus sakei/isolamento & purificação , Anotação de Sequência Molecular , Filogenia , Plasmídeos/genética , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA