Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Hazard Mater ; 468: 133787, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364579

RESUMO

Bioadsorption, bioaccumulation and biodegradation processes in algae, play an important role in the biomagnification of antibiotics, or other organic pollutants, in aquatic food chains. In this study, the bioadsorption, bioaccumulation and biodegradation of norfloxacin [NFX], sulfamethazine [SMZ] and roxithromycin [RTM]) is investigated using a series of culture experiments. Chlorella vulgaris was exposed to these antibiotics with incubation periods of 24, 72, 120 and 168 h. Results show the bioadsorption concentration of antibiotics in extracellular matter increases with increasing alkaline phosphatase activity (AKP/ALP). The bioaccumulation concentrations of NFX, SMZ and RTM within cells significantly increase after early exposure, and subsequently decrease. There is a significant positive antibiotics correlation to superoxide dismutase (SOD), the photosynthetic electron transport rate (ETR) and maximum fluorescence after dark adaptation (Fv/Fm), while showing a negative correlation to malondialdehyde (MDA). The biodegradation percentages (Pb) of NFX, SMZ and RTM range from 39.3 - 97.2, 41.3 - 90.5, and 9.3 - 99.9, respectively, and significantly increase with increasing Fv/Fm, density and chlorophyll-a. The accumulation of antibiotics in extracellular and intracellular substances of C. vulgaris is affected by antibiotic biodegradation processes associated with cell physiological state. The results succinctly explain relationships between algal growth during antibiotics exposure and the bioadsorption and bioaccumulation of these antibiotics in cell walls and cell matter. The findings draw an insightful understanding of the accumulation of antibiotics in algae and provide a scientific basis for the better utilization of algae treatment technology in antibiotic contaminated wastewaters. Under low dose exposures, the biomagnification of antibiotics in algae is affected by bioadsorption, bioaccumulation and biodegradation.


Assuntos
Chlorella vulgaris , Roxitromicina , Poluentes Químicos da Água , Antibacterianos/metabolismo , Chlorella vulgaris/metabolismo , Bioacumulação , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Norfloxacino , Roxitromicina/metabolismo
2.
Environ Sci Technol ; 58(2): 1142-1151, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38159290

RESUMO

Landscape fires annually generate large quantities of black carbon. The water-soluble fraction of black carbon (i.e., dissolved black carbon/DBC) is an important constituent of the dissolved organic carbon (DOC) pool, playing a crucial role in the global budget of refractory carbon and climate change. A key challenge in constraining the flux and fate of riverine DBC is to develop targeted and accurate quantification methods. Herein, we report that benzenepentacarboxylic acid (B5CA) intrinsically present in DBC can be used as an exclusive and holistic marker (representing both condensed aromatics and less-/nonaromatic fractions) for DBC quantification. B5CA was universally detected in water extractions of biochar and fire-affected soils with relatively large abundance but not produced by nonthermogenic processes. It has good mobility in the environment as it is not readily precipitated by cations or adsorbed by common geosorbents. B5CA also represents the recalcitrant components of DBC with excellent stability against photodegradation and biodegradation. Applying B5CA as the DBC marker in surface waters of the Changjiang River (i.e., the third largest river in the world), we calculate the DBC concentration in the downstream Changjiang River to be 4.8 ± 5.5% of the DOC flux. Our work provides a simple and reliable approach for the accurate quantification and source tracking of DBC in the soil and aquatic carbon pools.


Assuntos
Carbono , Ácidos Carboxílicos , Solo , Rios , Fuligem , Água
3.
Carbohydr Polym ; 317: 121092, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364960

RESUMO

Recently, the application of cellulose nanocrystals (CNCs) in the field of hydrogel sensors has attracted much attention. However, it remains challenging to construct CNC-reinforced conductive hydrogels with a combination of enhanced strength, low hysteresis, high elasticity and remarkable adhesiveness. Herein, we present a facile method to prepare conductive nanocomposite hydrogels with the above-mentioned properties by reinforcing chemically crosslinked poly(acrylic acid) (PAA) hydrogel with rational-designed copolymer-grafted CNCs. The copolymer-grafted CNCs interact with PAA matrix to form carboxyl-amide conventional hydrogen bonds and carboxyl-amino ionic hydrogen bonds, among which the ionic hydrogen bonds with rapid recovery capability are critical to the low hysteresis and high elasticity of hydrogel. The introduction of copolymer-grafted CNCs endowed the hydrogels with enhanced tensile/compressive strength, high resilience (>95 %) during tensile cyclic loading, rapid self-recovery during compressive cyclic loading and improved adhesiveness. Thanks to the high elasticity and durability of hydrogel, the assembled hydrogel sensors exhibited good cycling repeatability and durability in detecting various strains, pressures and human motions. The hydrogel sensors also showed satisfying sensitivity. Hence, the proposed preparation method and the obtained CNC-reinforced conductive hydrogels would open new avenues in flexible strain and pressure sensors for human motion detection and beyond.

4.
Environ Sci Technol ; 57(6): 2506-2515, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36734358

RESUMO

Fuel combustion provides basic energy for the society but also produces CO2 and incomplete combustion products that threaten human survival, climate change, and global sustainability. A variety of fuels burned in different facilities expectedly have distinct impacts on climate, which remains to be quantitatively assessed. This study uses updated emission inventories and an earth system model to evaluate absolute and relative contributions in combustion emission-associated climate forcing by fuels, sectors, and regions. We showed that, from 1970 to 2014, coal burned in the energy sector and oil used in the transportation sector contributed comparable energies consumed (24 and 20% of the total) but had distinct climate forcing (1 and 40%, respectively). Globally, coal burned for energy production had negative impacts on climate forcing but positive effects in the residential sector. In many developing countries, coal combustion in the energy sector had negative radiative forcing (RF) per unit energy consumed due to insufficient controls on sulfur and scattering aerosol levels, but oils in the transportation sector had high positive RF values. These results had important implications on the energy transition and emission reduction actions in response to climate change. Distinct climate efficiencies of energies and the spatial heterogeneity implied differentiated energy utilization strategies and pollution control policies by region and sector.


Assuntos
Poluição do Ar , Carvão Mineral , Humanos , Carvão Mineral/análise , Fenômenos Físicos
5.
Environ Pollut ; 318: 120803, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503012

RESUMO

The imbalance of atmospheric, terrestrial and aquatic phosphorus budgets remains a research conundrum and global concern. In this work, the uptake, distribution, bioaccumulation and emission of organophosphate esters (OPEs) by clove trees (Syzygium aromaticum), lemon trees (Citrus limon) and cape jasmine trees (Gardenia jasminoides var. fortuniana) was investigated as conduits for phosphorus transfer or sinks and sources. The objective was to assess the role OPEs in soils play as atmospheric phosphorus sources through plant bioaccumulation and emission. Results demonstrated OPEs in experimental soil plots ranging from 0.01 to 81.0 ng g-1 dry weight, were absorbed and transported through plants to the atmosphere. The total emission of OPEs varied greatly from 0.2 to 588.9 pg g-1 L-1 h-1, with a mean of 47.6 pg g-1 L-1 h-1. There was a negative linear relationship between the concentrations of total phosphorus and four OPEs, tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate. Trimethyl phosphate levels were positively correlated with total nitrogen, and the concentrations of tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate decreased along with available potassium in leaves after 72 h. There was a significantly positive linear relationship between higher emission concentrations of OPEs and the emission factor of OPEs concentration (F = 4.2, P = 0.002), with lower emissions of OPEs and the bioaccumulation of OPEs in leaves (F = 4.8, P = 0.004). OPEs releases to the atmosphere were enriched in aerosols, and participate in atmospheric chemical reactions like photolysis, thereby affecting the phosphorus balance and cycling in the atmosphere.


Assuntos
Retardadores de Chama , Fósforo , Bioacumulação , Monitoramento Ambiental/métodos , Retardadores de Chama/análise , Ésteres , Organofosfatos , Fosfatos , Solo , Atmosfera , China
6.
Environ Pollut ; 306: 119378, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500713

RESUMO

Energy is vital to human society but significantly contributes to the deterioration of environmental quality and the global issue of climate change. Biomass and fossil fuels are important energy sources but have distinct pollutant emission characteristics during the burning process. This study aimed at attributing radiative forcing of climate forcers, including greenhouse gases but also short-lived climate pollutants, from the burning of fossil and biomass fuels, and the spatiotemporal characteristics. We found that air pollutant emissions from the burning process of biofuel and fossil fuels induced RFs of 68.2 ± 36.8 mW m-2 and 840 ± 225 mW m-2, respectively. The relatively contribution of biomass burning emissions was 7.6% of that from both fossil and biofuel combustion processes, while its contribution in energy supply was 11%. These relative contributions varied obviously across different regions. The per unit energy consumption of biomass fuel in the developed regions, such as North America (0.57 ± 0.33 mW m-2/107TJ) and Western Europe (0.98 ± 0.79 mW m-2/107TJ), had higher impacts of combustion emission related RFs compared to that of developing regions, like China (0.40 ± 0.26 mW m-2/107TJ), and South and South-East Asia (0.31 ± 0.71 mW m-2/107TJ) where low efficiency biomass burning in residential sector produced significant amounts of organic matter that had a cooling effect. Note that the study only evaluated fuel combustion emission related RFs, and those associated with the production of fuels and land use change should be studied later in promoting a comprehensive understanding on the climate impacts of biomass utilization.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biocombustíveis , Biomassa , Monitoramento Ambiental , Combustíveis Fósseis/análise , Fósseis , Humanos , Material Particulado/análise
7.
Sci Total Environ ; 817: 153044, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038527

RESUMO

Black carbon (BC) contributes to patterns of Arctic warming, yet the initial hydrophilic ratio (IHR) of BC emitted from various sources and its impact on Arctic BC remain uncertain. With the use of a tagged tracer method of BC implemented in the global chemistry transport model GEOS-Chem, IHRs were partitioned into 7 BC combustion source categories according to the PKU-BC-v2 emission inventory. The results show that as the IHR increased, the concentration of BC decreased globally. The impact on Arctic BC was mainly reflected in the vertical profile and the burden rather than at the surface. Specifically, the greatest impact of IHR on Arctic BC appeared in summer, with the largest perturbation appearing at an altitude of approximately 600 hPa, reaching 8%. This change in BC vertical profile was mainly caused by the IHR change of wildfire combustion in Russia (44%) and Canada (51%), and the emissions from these two regions were also the two most important contributors to the BC concentration and burden in the middle and lower Arctic atmosphere in summer. In the other three seasons, anthropogenic combustion sources (oil, coal, and biomass) in East Asia, Russia, and Europe accounted for 19-40%, 14-28%, and 7-23%, respectively, of the monthly BC burden. Emissions from Russia were the most important contributor (27-43%) to the monthly BC surface concentration. Due to the large adjustment in IHR from 20% to 70%, biomass burning in Europe was shown to be the dominant contributor causing both burden (39%) and surface concentration (88%) changes in all seasons except summer.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Fuligem/análise
9.
J Safety Res ; 78: 180-188, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399913

RESUMO

INTRODUCTION: Pedestrian safety is a major concern as traffic crashes are the leading cause of fatalities and injuries for commuters. Traffic safety research in the past has developed various strategies to counteract traffic crashes, including the safety performance function (SPF). However, there is still a need for research dedicated to enhancing the SPF for pedestrians from perspectives of methodological framework and data input. To fill this gap, this study aims to add to the current SPF development practice literature by focusing on pedestrian-involved collisions, while considering the typical vehicle ones as well. METHODS: First, bivariate models are used to account for the common unobserved heterogeneity shared by the pedestrian- and vehicle-related crashes at the same intersections. Second, variable importance ranking technique is used, along with correlation analysis, to determine mode-specific feature input. Third, the exposure information for both modes, annual pedestrian count, and annual daily vehicles traveled are used for model development. Fourth, a recent Bayesian inference approach (integrated nested Laplace approximation (INLA)) was adopted for bivariate setting. Finally, different evaluation criteria are used to facilitate comprehensive model assessment. RESULTS: The results reveal different statistically significant factors contributing to each of the modes. The offset intersection provides better safety performance for both pedestrians and drivers as compared to other intersection designs. The model findings also corroborate the sensibility of using the bivariate models, rather than the separate univariate ones. Practical Applications: The study shows that pedestrians are more vulnerable to various intersection features such as left-turn channelization, intersection control, urban and rural population group, presence of signal mastarm on the cross-street, and mainline average daily traffic. Greater focus should be directed toward such intersection features to improve pedestrian safety.


Assuntos
Pedestres , Acidentes de Trânsito/prevenção & controle , Teorema de Bayes , Humanos , População Rural , Segurança
10.
Environ Sci Technol ; 55(15): 10300-10309, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34296598

RESUMO

Atmospheric black carbon (BC) concentrations are governed by both emissions and meteorological conditions. Distinguishing these effects enables quantification of the effectiveness of emission mitigation actions by excluding meteorological effects. Here, we develop reduced-form models in both direct (RFDMs) and inverse (RFIMs) modes to estimate ambient BC concentrations. The models were developed based on outputs from multiyear simulations under three conditional scenarios with realistic or fixed emissions and meteorological conditions. We established a set of probabilistic functions (PFs) to quantify the meteorological influences. A significant two-way linear relationship between multiyear annual emissions and mean ambient BC concentrations was revealed at the grid cell scale. The correlation between them was more significant at grid cells with high emission densities. The concentrations and emissions at a given grid cell are also significantly correlated with emissions and concentrations of the surrounding areas, respectively, although to a lesser extent. These dependences are anisotropic depending on the prevailing winds and source regions. The meteorologically induced variation at the monthly scale was significantly higher than that at the annual scale. Of the major meteorological parameters, wind vectors, temperature, and relative humidity were found to most significantly affect variation in ambient BC concentrations.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Meteorologia , Fuligem/análise , Vento
11.
Environ Sci Technol ; 55(12): 7869-7879, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34096723

RESUMO

Accurate estimation of black carbon (BC) emissions is essential for assessing the health and climate impact of this pollutant. Past emission inventories were associated with high uncertainty due to data limitations, and recent information has provided a unique updating opportunity. Moreover, understanding the drivers that cause temporal emission changes is of research value. Here, we update the global BC emission estimates using new data on the activities and emission factors (EFs). The new inventory covers 73 detailed sources at 0.1° × 0.1° spatial resolution and monthly temporal resolution from 1960 to 2017. The estimated annual emissions were 32% higher than the average of several previous inventories, which was primarily due to field-measured EFs for residential stoves and differentiated EFs for motor vehicles. In addition, the updated emissions show an inverse U-shaped temporal trend, which was mainly driven by the interaction between the positive effects of population growth, per capita energy consumption, and vehicle fleet and the negative effects of residential energy switching, stove upgrading, phasing out of beehive coke ovens, and reduced EFs for vehicles and industrial processes. Urbanization caused a significant increase in urban emissions accompanied by a more significant decline in rural emissions.


Assuntos
Poluentes Atmosféricos , Utensílios Domésticos , Poluentes Atmosféricos/análise , Carbono , Monitoramento Ambiental , Veículos Automotores , Fuligem/análise , Emissões de Veículos/análise
12.
Environ Sci Technol ; 55(11): 7316-7326, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33977718

RESUMO

Coal abatement actions for pollution reduction often target total coal consumption. The health impacts of coal uses, however, vary extensively among sectors. Here, we modeled the sectorial contributions of coal uses to emissions, outdoor and indoor PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 mm) concentrations, exposures, and health outcomes in China from 1970 to 2014. We show that in 2014, residential coal accounted for 2.9% of total energy use but 34% of premature deaths associated with PM2.5 exposure, showing that effects were magnified substantially along the causal path. The number of premature deaths attributed to unit coal consumption in the residential sector was 40 times higher than that in the power and industrial sectors. Emissions of primary PM2.5 were more important than secondary aerosol precursors in terms of health consequences, and indoor exposure accounted for 97% and 91% of total premature deaths attributable to PM2.5 from coal combustion in 1974 and 2014, respectively. Our assessment raises a critical challenge in the switching of residential coal uses to effectively mitigate PM2.5 exposure in the Chinese population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Carvão Mineral/análise , Material Particulado/análise
13.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876752

RESUMO

Knowing the historical relative contribution of greenhouse gases (GHGs) and short-lived climate forcers (SLCFs) to global radiative forcing (RF) at the regional level can help understand how future GHGs emission reductions and associated or independent reductions in SLCFs will affect the ultimate purpose of the Paris Agreement. In this study, we use a compact Earth system model to quantify the global RF and attribute global RF to individual countries and regions. As our evaluation, the United States, the first 15 European Union members, and China are the top three contributors, accounting for 21.9 ± 3.1%, 13.7 ± 1.6%, and 8.6 ± 7.0% of global RF in 2014, respectively. We also find a contrast between developed countries where GHGs dominate the RF and developing countries where SLCFs including aerosols and ozone are more dominant. In developing countries, negative RF caused by aerosols largely masks the positive RF from GHGs. As developing countries take measures to improve the air quality, their negative contributions from aerosols will likely be reduced in the future, which will in turn enhance global warming. This underlines the importance of reducing GHG emissions in parallel to avoid any detrimental consequences from air quality policies.

14.
Environ Sci Technol ; 55(8): 4483-4493, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33715364

RESUMO

The residential sector is a major source of air pollutant emission inventory uncertainties. A nationwide field emission measurement campaign was conducted in rural China to evaluate the variabilities of realistic emission factors (EFs) from indoor solid fuel combustion. For a total of 1313 burning events, the overall average EFs (±standard deviation) of PM2.5 were 8.93 ± 6.95 and 7.33 ± 9.01 g/kg for biomass and coals, respectively, and 89.3 ± 51.2 and 114 ± 87 g/kg for CO. Higher EFs were found from burning of uncompressed straws, while lower EFs were found from processed biomass pellets, coal briquettes, and relatively clean anthracite coals. Modified combustion efficiency was found to be the most significant factor associated with variations in CO EFs, whereas for PM2.5, fuel and stove differences determined its variations. Weak correlations between PM2.5 and CO indicated high uncertainties in using CO as a surrogate for PM2.5. EFs accurately fit log-normal distributions, and obvious spatial heterogeneity was observed attributed to different fuel-stove combinations across the country. Emission estimation variabilities, which are determined by the interquartile ranges divided by the median values, were notably reduced when spatially resolved EFs were adopted in the inventory.


Assuntos
Poluentes Atmosféricos , Utensílios Domésticos , Poluentes Atmosféricos/análise , Biomassa , China , Carvão Mineral/análise , Material Particulado/análise
15.
Sci Total Environ ; 771: 145393, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545465

RESUMO

Hygroscopicity of black carbon (BC) aerosols is a key factor determining their climate forcing effect and atmospheric lifetime. However, the compositional dependence of BC hygroscopicity is not well understood. Here, a variety of different compositional components were separated from three representative BC samples recovered from pyrolysis (grass and wheat straw derived BC, household soot), including water extracted fraction of BC (WEBC, 9-21 wt%), residue fraction of BC after water extraction (R-WEBC, 79-91 wt%), water extracted minerals (WEM, 9-18 wt%), alkali extracted organic carbon (OCAE, 1-9 wt%), and elemental carbon (EC, 37-48 wt%). The bulk BC and separated BC components were analyzed in detail by elemental analysis and combined spectroscopic analyses. Their equilibrium hygroscopicity was measured by gravimetric method over a range of relative humidity (RH) levels (10-94%). Compared with the two organic components (OCAE and EC), the inorganic component (WEM) exhibited much stronger water uptake at all RH levels. At 94% RH level, WEM accounted for 16-139% of the overall water uptake by BC, whereas OCAE and EC accounted for only 1-3% and 6-26%, respectively. The XRD analysis of WEBC and WEM from household soot at varying RH levels indicated that the enhanced water uptake by these two components as well as that by bulk BC at high RH levels was due to the deliquescent salts (e.g., KCl, NH4Cl, KNO3, and NaCl). The strong hysteresis loops observed for bulk BC and WEBC could be attributed to the organic-facilitated drastic structural and morphological rearrangement of mineral particles as evidenced by the optical microscope analysis. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis reaffirmed the dominant role played by the inorganic component in the hygroscopic behaviors of BC.

16.
Sci Total Environ ; 762: 143174, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33131833

RESUMO

We tracked atmospheric phosphorus (P) in suspended particulate matter (PM) from a site in Beijing, China over a three-year period and found a new relationship between plants and atmospheric P. Concentrations of total phosphorus (TP) in the atmosphere during plant growing seasons were 2.5 times those observed in other months and levels of organic phosphorus (OP) were 3.9 times as high. TP and OP increases during growing seasons were much more significant in PM with diameters of over 2.5 µm (PM>2.5). PM collected during growing seasons included high levels of P but less nitrogen than that in primary biogenic aerosol particles (PBAPs) and differed from other emission sources such as combustion emissions and dust. A time series of OP concentrations in the atmosphere shows a time lag relative to Normalized Difference Vegetation Index (NDVI) data with high levels found during early growing periods and much lower levels found during flourishing periods. Thus, we find that plants contribute to atmospheric P and especially to OP rather than to PBAP levels.

17.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115732

RESUMO

Residential contribution to air pollution-associated health impacts is critical, but inadequately addressed because of data gaps. Here, we fully model the effects of residential energy use on emissions, outdoor and indoor PM2.5 concentrations, exposure, and premature deaths using updated energy data. We show that the residential sector contributed only 7.5% of total energy consumption but contributed 27% of primary PM2.5 emissions; 23 and 71% of the outdoor and indoor PM2.5 concentrations, respectively; 68% of PM2.5 exposure; and 67% of PM2.5-induced premature deaths in 2014 in China, with a progressive order of magnitude increase from sources to receptors. Biomass fuels and coal provided similar contributions to health impacts. These findings are particularly true for rural populations, which contribute more to emissions and face higher premature death risks than urban populations. The impacts of both residential and nonresidential emissions are interconnected, and efforts are necessary to simultaneously mitigate both emission types.

18.
Sci Rep ; 10(1): 10609, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606440

RESUMO

Rice yield have been affected by the increased extreme precipitation events in recent decades. Yet, the spatio-temporal patterns of extreme precipitation by rice type and phenology remain elusive. Here, we investigate the characteristics of four extreme precipitation indices across China's rice paddy and their potential association with crop yields, by using hourly precipitation data from 1,215 stations and rice phenology observations from 45 sub-regions. The data indicate that hourly extreme precipitation have significantly increased in 1961-2012 for single rice and early rice in China but not for late rice. Rice were mainly exposed to extreme precipitation from transplantation to flowering stages. The frequency and proportion of extreme precipitation were significantly increased by 2.0-4.7% and 2.3-2.9% per decade, respectively, mainly in south China and Yangtze River Basin. The precipitation intensity and maximum hourly precipitation were increased by 0.7-1.1% and 0.9-2.8% per decade, respectively, mainly in central China and southeast coastal area. These extreme precipitation indices played a role as important as accumulated precipitation and mean temperature on the interannual variability of rice yields, regardless of rice types. Our results also highlight the urgencies to uncover the underlying mechanisms of extreme precipitation on rice growth, which in turn strengthens the predictability of crop models.

19.
Chemosphere ; 252: 126496, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203782

RESUMO

The surface products have a significant influence on the reactivity of zero-valent iron-based materials. Although the enhancing effect of graphene on the reactivity of nanoscale zero-valent iron (NZVI)/graphene composites have been confirmed, the effect of graphene on the formation of surface products of NZVI is not well understood. In order to assess the effect of graphene on the structural of the outer iron oxide layers of NZVI, the NZVI was pre-oxidized by graphene oxide (ONZVI-GO). Compared with the NZVI oxidized by O2 (ONZVI-O2), ONZVI-GO was shown to be effective at NO3- removal with a high efficiency over a wide range of initial pH values. The results from characterization showed that GO could induce the formation of a tight iron oxide shell with dense spinel structures. The boron introduced during the preparation of NZVI was doped into iron oxides on the surface of ONZVI-GO. The B-O in adsorbed borate was transformed to B-B/B-Fe in the lattice structure of iron oxides, causing the formation of highly electron-deficient Lewis acid sites on the surface of ONZVI-GO, which could effectively gather NO3- and OH-, leading to the higher efficiency removal of NO3- than ONZVI-O2 over a wide range of initial pH values. This study provides new insight into the interaction between graphene and the surface species of NZVI.


Assuntos
Grafite/química , Poluentes Químicos da Água/química , Adsorção , Boro/química , Compostos Férricos , Ferro/química , Nitratos , Óxidos de Nitrogênio , Oxirredução , Poluentes Químicos da Água/análise
20.
Environ Pollut ; 258: 113728, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31877468

RESUMO

The emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH3) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.8% higher than that in a greenhouse containing only soil, and the proportion of organic phosphorus (OP) in TP was doubled. 31P nuclear magnetic resonance tests (31P-NMR) of PM showed that phosphate monoesters were the main components contributed by plants in both the greenhouse and at an outside observation site. Atmospheric gaseous P was directly measured to be 1-2 orders of magnitude lower than P in PM but appeared to double during plant growing seasons relative to other months. Bag-sampling and gas chromatography mass spectrometry (GCMS) tests showed that the gaseous P emitted by plants in the greenhouse was triethyl phosphate. VOP might be an important component of atmospheric P that has been underestimated in previous studies.


Assuntos
Material Particulado/análise , Fósforo/análise , Plantas/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA