Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(3): e2301811, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37779336

RESUMO

Next generation on-skin electrodes will require soft, flexible, and gentle materials to provide both high-fidelity sensing and wearer comfort. However, many commercially available on-skin electrodes lack these key properties due to their use of rigid hardware, harsh adhesives, uncomfortable support structures, and poor breathability. To address these challenges, this work presents a new device paradigm by joining biocompatible electrospun spider silk with printable liquid metal to yield an incredibly soft and scalable on-skin electrode that is strain-tolerant, conformable, and gentle on-skin. These electrodes, termed silky liquid metal (SLiM) electrodes, are found to be over five times more breathable than commercial wet electrodes, while the silk's intrinsic adhesion mechanism allows SLiM electrodes to avoid the use of harsh artificial adhesives, potentially decreasing skin irritation and inflammation over long-term use. Finally, the SLiM electrodes provide comparable impedances to traditional wet and other liquid metal electrodes, offering a high-fidelity sensing alternative with increased wearer comfort. Human subject testing confirmed the SLiM electrodes ability to sense electrophysiological signals with high fidelity and minimal irritation to the skin. The unique properties of the reported SLiM electrodes offer a comfortable electrophysiological sensing solution especially for patients with pre-existing skin conditions or surface wounds.


Assuntos
Metais , Seda , Humanos , Eletrodos , Pele , Impedância Elétrica
2.
Adv Healthc Mater ; 11(18): e2200745, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35734914

RESUMO

Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.


Assuntos
Metais , Têxteis , Condutividade Elétrica , Impedância Elétrica , Eletrodos
3.
Adv Healthc Mater ; 10(20): e2100893, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212513

RESUMO

Pressure sensors for wearable healthcare devices, particularly force sensitive resistors (FSRs) are widely used to monitor physiological signals and human motions. However, current FSRs are not suitable for integration into wearable platforms. This work presents a novel technique for developing textile FSRs (TFSRs) using a combination of inkjet printing of metal-organic decomposition silver inks and heat pressing for facile integration into textiles. The insulating void by a thermoplastic polyurethane (TPU) membrane between the top and bottom textile electrodes creates an architectured piezoresistive structure. The structure functions as a simple logic switch where under a threshold pressure the electrodes make contact to create conductive paths (on-state) and without pressure return to the prior insulated condition (off-state). The TFSR can be controlled by arranging the number of layers and hole diameters of the TPU spacer to specify a wide range of activation pressures from 4.9 kPa to 7.1 MPa. For a use-case scenario in wearable healthcare technologies, the TFSR connected with a readout circuit and a mobile app shows highly stable signal acquisition from finger movement. According to the on/off state of the TFSR with LED bulbs by different weights, it can be utilized as a textile switch showing tactile feedback.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Atenção à Saúde , Condutividade Elétrica , Eletrodos , Humanos
4.
ACS Appl Mater Interfaces ; 13(20): 24081-24094, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988966

RESUMO

Soft printed electronics exhibit unique structures and flexibilities suited for a plethora of wearable applications. However, forming scalable, reliable multilayered electronic devices with heterogeneous material interfaces on soft substrates, especially on porous and anisotropic structures, is highly challenging. In this study, we demonstrate an all-inkjet-printed textile capacitor using a multilayered structure of bilayer polymer dielectrics and particle-free metal-organic decomposition (MOD) silver electrodes. Understanding the inherent porous/anisotropic microstructure of textiles and their surface energy relationship was an important process step for successful planarization. The MOD silver ink formed a foundational conductive layer through the uniform encapsulation of individual fibers without blocking fiber interstices. Urethane-acrylate and poly(4-vinylphenol)-based bilayers were able to form a planarized dielectric layer on polyethylene terephthalate textiles. A unique chemical interaction at the interfaces of bilayer dielectrics performed a significant role in insulating porous textile substrates resulting in high chemical and mechanical durability. In this work, we demonstrate how textiles' unique microstructures and bilayer dielectric layer designs benefit reliability and scalability in the inkjet process as well as the use in wearable electronics with electromechanical performance.

5.
Micromachines (Basel) ; 11(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260364

RESUMO

Recent advancements in printing technologies have greatly improved the fabrication efficiency of flexible and wearable electronics. Electronic textiles (E-textiles) garner particular interest because of their innate and desirable properties (i.e., conformability, breathability, fabric hand), which make them the ideal platform for creating wireless body area networks (WBANs) for wearable healthcare applications. However, current WBANs are limited in use due to a lack of flexible antennas that can provide effective wireless communication and data transfer. In this work, we detail a novel fabrication process for flexible textile-based multifunctional antennas with enhanced dielectric properties. Our fabrication process relies on direct-write printing of a dielectric ink consisting of ultraviolet (UV)-curable acrylates and urethane as well as 4 wt.% 200 nm barium titanate (BT) nanoparticles to enhance the dielectric properties of the naturally porous textile architecture. By controlling the spray-coating process parameters of BT dielectric ink on knit fabrics, the dielectric constant is enhanced from 1.43 to 1.61, while preserving the flexibility and air permeability of the fabric. The novel combination textile substrate shows great flexibility, as only 2 N is required for a 30 mm deformation. The final textile antenna is multifunctional in the sense that it is capable of operating in a full-duplex mode while presenting a relatively high gain of 9.12 dB at 2.3 GHz and a bandwidth of 79 MHz (2.260-2.339 GHz) for each port. Our proposed manufacturing process shows the potential to simplify the assembly of traditionally complex E-textile systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA