Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
1.
Heliyon ; 10(9): e29723, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707434

RESUMO

To reveal the role of gut microbiota (GM) in the occurrence and development of idiopathic central precocious puberty (ICPP) using 16S rDNA sequencing and bioinformatics analysis. The Danazol-induced ICPP model was successfully constructed in this study. ZBDH and GnRHa treatments could effectively inhibit ICPP in rats, as manifested by the delayed vaginal opening time, reduced weight, decreased uterine organ coefficient, and decreased uterine wall thickness and corpus luteum number, as well as remarkably reduced serum hormone (LH, FSH, and E2) levels. According to 16S rDNA sequencing analysis results, there was no significant difference in the GM community diversity across different groups; however, the composition of the microbial community and the abundance of the dominant microbial community were dramatically different among groups. ZBDH and GnRHa treatments could effectively reduce the abundance of Muribaculateae and Lactobacillus and promote Prevotella abundance. ZBDH and GnRHa were effective in treating Danazol-induced ICPP model rats. The therapeutic effects of ZBDH and GnRHa could be related to the changes in GM in rats.

2.
Int Immunopharmacol ; 134: 112222, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38728881

RESUMO

Cardiovascular disease is currently the number one cause of death endangering human health. There is currently a large body of research showing that the development of cardiovascular disease and its complications is often accompanied by inflammatory processes. In recent years, epitranscriptional modifications have been shown to be involved in regulating the pathophysiological development of inflammation in cardiovascular diseases, with 6-methyladenine being one of the most common RNA transcriptional modifications. In this review, we link different cardiovascular diseases, including atherosclerosis, heart failure, myocardial infarction, and myocardial ischemia-reperfusion, with inflammation and describe the regulatory processes involved in RNA methylation. Advances in RNA methylation research have revealed the close relationship between the regulation of transcriptome modifications and inflammation in cardiovascular diseases and brought potential therapeutic targets for disease diagnosis and treatment. At the same time, we also discussed different cell aspects. In addition, in the article we also describe the different application aspects and clinical pathways of RNA methylation therapy. In summary, this article reviews the mechanism, regulation and disease treatment effects of m6A modification on inflammation and inflammatory cells in cardiovascular diseases in recent years. We will discuss issues facing the field and new opportunities that may be the focus of future research.

3.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725089

RESUMO

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Assuntos
Curcumina , Modelos Animais de Doenças , Metionina , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Metionina/deficiência , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Camundongos , Masculino , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Carnitina O-Palmitoiltransferase/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Propionatos/farmacologia , Propionatos/uso terapêutico , Propionatos/metabolismo , Humanos , Colina/metabolismo , Colina/farmacologia
4.
Anal Chim Acta ; 1308: 342667, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740453

RESUMO

BACKGROUND: High-efficiency and highly reliable analysis of microRNAs (miRNAs) in bodily fluids highlights its significance to be extensively utilized as candidates for non-invasive "liquid biopsy" approaches. DNA biosensors based on strand displacement amplification (SDA) methods have been successfully designed to detect miRNAs given the efficiently amplified and recycled of the target sequences. However, the unpredictable DNA framework and heavy reliance on free diffusion or random reactant collisions in existing approaches lead to delayed reaction kinetics and inadequate amplification. Thus, it is crucial to create a modular probe with a controlled structure, high local concentration, and ease of synthesis. RESULTS: Inspired by the natural spatial-confinement effect based on a well-known streptavidin-biotin interaction, we constructed a protein-DNA hybrid, named protein-scaffolded DNA tetrads (PDT), which consists of four biotinylated Y-shaped DNA (Y-DNA) surrounding a streptavidin protein center via a streptavidin-biotin bridge. The streptavidin-biotin recognition system significantly increased the local concentration and intermolecular distance of the probes to achieve enhanced reaction efficiency and kinetics. The PDT-based assay starts with the target miRNA binding to Y-DNA, which disassembles the Y-DNA structures into three types of hairpin-shaped structures via self-primed strand displacement amplification (SPSDA) and generates remarkable fluorescence signal that is proportional to the miRNA concentration. Results demonstrated that PDT enabled a more efficient detection of miRNA-21 with a sensitivity of 1 fM. Moreover, it was proven reliable for the detection of clinical serum samples, suggesting great potential for advancing the development of rapid and robust signal amplification technologies for early diagnosis. SIGNIFICANCE: This simple yet robust system contributes to the early diagnosis of miR-21 with satisfactory sensitivity and specificity, and display a significantly improved nuclease resistance owing to their unique structure. The results suggested that the strategy is expected to provide a promising potential platform for tumor diagnosis, prognosis and therapy.


Assuntos
Biotina , DNA , MicroRNAs , Técnicas de Amplificação de Ácido Nucleico , Estreptavidina , MicroRNAs/sangue , Humanos , Estreptavidina/química , DNA/química , DNA/sangue , Biotina/química , Técnicas Biossensoriais/métodos , Limite de Detecção
5.
Int Immunopharmacol ; 133: 112126, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669946

RESUMO

Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Neutrófilos , Fator de Transcrição STAT3 , Células Th17 , Células Th17/imunologia , Humanos , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neutrófilos/imunologia , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Interleucina-17/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Células Cultivadas , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Asma/imunologia , Asma/terapia , Masculino , Transdução de Sinais , Feminino , Modelos Animais de Doenças
6.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612840

RESUMO

The monoamine transporters, including the serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET), are the therapeutic targets for the treatment of many neuropsychiatric disorders. Despite significant progress in characterizing the structures and transport mechanisms of these transporters, the regulation of their transport functions through dimerization or oligomerization remains to be understood. In the present study, we identified a conserved intramolecular ion-pair at the third extracellular loop (EL3) connecting TM5 and TM6 that plays a critical but divergent role in the modulation of dimerization and transport functions among the monoamine transporters. The disruption of the ion-pair interactions by mutations induced a significant spontaneous cross-linking of a cysteine mutant of SERT and an increase in cell surface expression but with an impaired specific transport activity. On the other hand, similar mutations of the corresponding ion-pair residues in both DAT and NET resulted in an opposite effect on their oxidation-induced dimerization, cell surface expression, and transport function. Reversible biotinylation experiments indicated that the ion-pair mutations slowed down the internalization of SERT but stimulated the internalization of DAT. In addition, cysteine accessibility measurements for monitoring SERT conformational changes indicated that substitution of the ion-pair residues resulted in profound effects on the rate constants for cysteine modification in both the extracellular and cytoplasmatic substrate permeation pathways. Furthermore, molecular dynamics simulations showed that the ion-pair mutations increased the interfacial interactions in a SERT dimer but decreased it in a DAT dimer. Taken together, we propose that the transport function is modulated by the equilibrium between monomers and dimers on the cell surface, which is regulated by a potential compensatory mechanism but with different molecular solutions among the monoamine transporters. The present study provided new insights into the structural elements regulating the transport function of the monoamine transporters through their dimerization.


Assuntos
Cisteína , Proteínas da Membrana Plasmática de Transporte de Serotonina , Dimerização , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Biotinilação , Membrana Celular , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Polímeros
7.
Artigo em Inglês | MEDLINE | ID: mdl-38558461

RESUMO

BACKGROUND: Although many studies suggested the benefit of smoking cessation among pregnant women in reducing the risk of preterm birth (PTB), the timing of the effect of the cessation remains inconclusive. OBJECTIVES: To examine the association of trimester-specific smoking cessation behaviours with PTB risk. METHODS: We included 199,453 live births in Western New York between 2004 and 2018. Based on self-reported cigarette smoking during preconception and in each trimester, we created six mutually exclusive groups: non-smokers, quitters in each trimester, those who smoked throughout pregnancy, and inconsistent smokers. Risk ratios (RRs) and 95% confidence intervals (CIs) were estimated using Poisson regression to examine the association between smoking cessation and PTB. Effect modification by illegal drug use, maternal age, race and ethnicity and pre-pregnancy body mass index (BMI) was investigated multiplicatively by ratio of relative risk and additively by relative excess risk due to interaction (RERI). RESULTS: Overall, 6.7% of women had a PTB; 14.1% smoked throughout pregnancy and 3.4%, 1.8% and 0.8% reported quitting smoking during the first, second and third trimesters, respectively. Compared to non-smokers, third-trimester cessation (RR 1.20, 95% CI 1.01, 1.43) and smoking throughout pregnancy (RR 1.27, 95% CI 1.21, 1.33) were associated with a higher PTB risk, while quitting smoking during the first or second trimester, or inconsistent smoking was not associated with PTB. A positive additive interaction was identified for maternal age and late smoking cessation or smoking throughout pregnancy on PTB risk (RERI 0.17, 95% CI 0.00, 0.36), and a negative interaction was observed for pre-pregnancy BMI ≥30 kg/m2 (ratio of relative risk 0.70, 95% CI 0.63, 0.78; RERI -0.42, 95% CI -0.56, -0.30). CONCLUSION: Compared to non-smokers, smoking throughout pregnancy and third-trimester smoking cessation are associated with an increased risk of PTB, while quitting before the third trimester may not increase PTB risk.

8.
Redox Biol ; 71: 103109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452521

RESUMO

Cardiac fibrosis is a major public health problem worldwide, with high morbidity and mortality, affecting almost all patients with heart disease worldwide. It is characterized by fibroblast activation, abnormal proliferation, excessive deposition, and abnormal distribution of extracellular matrix (ECM) proteins. The maladaptive process of cardiac fibrosis is complex and often involves multiple mechanisms. With the increasing research on cardiac fibrosis, redox has been recognized as an important part of cardiac remodeling, and an imbalance in redox homeostasis can adversely affect the function and structure of the heart. The metabolism of metal ions is essential for life, and abnormal metabolism of metal ions in cells can impair a variety of biochemical processes, especially redox. However, current research on metal ion metabolism is still very limited. This review comprehensively examines the effects of metal ion (iron, copper, calcium, and zinc) metabolism-mediated redox homeostasis on cardiac fibrosis, outlines possible therapeutic interventions, and addresses ongoing challenges in this rapidly evolving field.


Assuntos
Proteínas da Matriz Extracelular , Humanos , Fibrose , Proteínas da Matriz Extracelular/metabolismo , Homeostase , Oxirredução , Íons
9.
J Cell Mol Med ; 28(7): e18157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494857

RESUMO

Periprosthetic osteolysis (PPO) caused by wear particles is one of the leading causes of implant failure after arthroplasty. Macrophage polarization imbalance and subsequent osteogenic inhibition play a crucial role in PPO. Calycosin (CA) is a compound with anti-inflammatory and osteoprotective properties. This study aimed to evaluate the effects of CA on titanium (Ti) particle-induced osteolysis, Ti particle-induced macrophage polarization and subsequent osteogenic deficits, and explore the associated signalling pathways in a Ti particle-stimulated calvarial osteolysis mouse model using micro-CT, ELISA, qRT-PCR, immunofluorescence and western blot techniques. The results showed that CA alleviated inflammation, osteogenic inhibition and osteolysis in the Ti particle-induced calvarial osteolysis mouse model in vivo. In vitro experiments showed that CA suppressed Ti-induced M1 macrophage polarization, promoted M2 macrophage polarization and ultimately enhanced osteogenic differentiation of MC3T3-E1 cells. In addition, CA alleviated osteogenic deficits by regulating macrophage polarization homeostasis via the NF-κB signalling pathway both in vivo and in vitro. All these findings suggest that CA may prove to be an effective therapeutic agent for wear particle-induced osteolysis.


Assuntos
Isoflavonas , Osteogênese , Osteólise , Camundongos , Animais , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Osteólise/metabolismo , Titânio/toxicidade , Macrófagos/metabolismo
10.
Anal Chem ; 96(10): 4205-4212, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38433457

RESUMO

Accurate identification of single-nucleotide mutations in circulating tumor DNA (ctDNA) is critical for cancer surveillance and cell biology research. However, achieving precise and sensitive detection of ctDNAs in complex physiological environments remains challenging due to their low expression and interference from numerous homologous species. This study introduces single-nucleotide-specific lipidic nanoflares designed for the precise and visible detection of ctDNA via toehold-initiated self-priming DNA polymerization (TPP). This system can be assembled from only a single cholesterol-conjugated multifunctional molecular beacon (MMB) via hydrophobicity-mediated aggregation. This results in a compact, high-density, and nick-hidden arrangement of MMBs on the surface of lipidic micelles, thereby enhancing their biostability and localized concentrations. The assay commences with the binding of frequently mutated regions of ctDNA to the MMB toehold domain. This domain is the proximal holding point for initiating the TPP-based strand-displacement reaction, which is the key step in enabling the discrimination of single-base mutations. We successfully detected a single-base mutation in ctDNA (KRAS G12D) in its wild-type gene (KRAS WT), which is one of the most frequently mutated ctDNAs. Notably, coexisting homologous species did not interfere with signal transduction, and small differences in these variations can be visualized by fluorescence imaging. The limit of detection was as low as 10 amol, with the system functioning well in physiological media. In particular, this system allowed us to resolve genetic mutations in the KRAS gene in colorectal cancer, suggesting its high potential in clinical diagnosis and personalized medicine.


Assuntos
DNA Tumoral Circulante , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Nucleotídeos , Polimerização , Mutação , DNA Tumoral Circulante/genética
11.
Sci Rep ; 14(1): 5285, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438423

RESUMO

Clinical studies have shown that there may be a certain relationship between pathological changes of the myodural bridge complex (MDBC) and chronic headaches of unknown cause. But there is still a lack of experimental evidence to explain the possible mechanism. This study aims to further confirm this relationship between MDBC and chronic headaches and explore its potential occurrence mechanism in rats. Bleomycin (BLM) or phosphate-buffered saline (PBS) was injected into the myodural bridge fibers of rats to establish the hyperplastic model of MDBC. After 4 weeks, the occurrence of headaches in rats was evaluated through behavioral scores. The immunohistochemistry staining method was applied to observe the expression levels of headache-related neurotransmitters in the brain. Masson trichrome staining results showed that the number of collagen fibers of MDBC was increased in the BLM group compared to those of the other two groups. It revealed hyperplastic changes of MDBC. The behavioral scores of the BLM group were significantly higher than those of the PBS group and the blank control group. Meanwhile, expression levels of CGRP and 5-HT in the headache-related nuclei of the brain were increased in the BLM group. The current study further confirms the view that there is a relationship between pathological changes of MDBC and chronic headaches of unknown cause. This study may provide anatomical and physiological explanations for the pathogenesis of some chronic headaches of unknown cause.


Assuntos
Transtornos da Cefaleia , Animais , Ratos , Cefaleia , Bleomicina , Encéfalo , Núcleo Celular , Hiperplasia
12.
Front Endocrinol (Lausanne) ; 15: 1287795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455656

RESUMO

Background: Inflammation is a predictor of severe complications in patients with COVID-19 infection under a variety of clinical settings. A few studies suggested that COVID-19 infection was a trigger of hyperglycemic crises including diabetic ketoacidosis (DKA) and/or hyperglycemic hyperosmolar state (HHS). However, the association between inflammation and hyperglycemic crises in diabetic patients with COVID-19 infection is unclear. Methods: One hundred and twenty-four patients with type 2 diabetes mellitus (T2DM) and COVID-19 infection from January 2023 to March 2023 were retrospectively analyzed. Demographic, clinical, and laboratory data, especially inflammatory markers including white blood cell (WBC), neutrophils, neutrophil-to-lymphocyte ratio (NLR), c-reactive protein (CRP) and procalcitonin (PCT) were collected and compared between patients with or without DKA and/or HHS. Multivariable logistic regression analysis was conducted to explore the association between inflammatory biomarkers and the prevalence of hyperglycemic crises. Patients were followed up 6 months for outcomes. Results: Among 124 diabetic patients with COVID-19, 9 were diagnosed with DKA or HHS. Comparing COVID-19 without acute diabetic complications (ADC), patients with DKA or HHS showed elevated levels of c-reactive protein (CRP, P=0.0312) and procalcitonin (PCT, P=0.0270). The power of CRP and PCT to discriminate DKA or HHS with the area under the receiver operating characteristics curve (AUROC) were 0.723 and 0.794, respectively. Multivariate logistic regression indicated 1.95-fold and 1.97-fold increased risk of DKA or HHS with 1-unit increment of CRP and PCT, respectively. However, neither CRP nor PCT could predict poor outcomes in diabetic patients with COVID-19. Conclusion: In this small sample size study, we firstly found that elevated serum CRP and PCT levels increased the risk of hyperglycemic crises in T2DM patients with COVID-19 infection. More study is needed to confirm our findings.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Cetoacidose Diabética , Coma Hiperglicêmico Hiperosmolar não Cetótico , Humanos , Diabetes Mellitus Tipo 2/complicações , Coma Hiperglicêmico Hiperosmolar não Cetótico/diagnóstico , Coma Hiperglicêmico Hiperosmolar não Cetótico/epidemiologia , Coma Hiperglicêmico Hiperosmolar não Cetótico/etiologia , Estudos Retrospectivos , Proteína C-Reativa , Pró-Calcitonina , COVID-19/complicações , Cetoacidose Diabética/complicações , Biomarcadores , Inflamação/complicações
13.
Free Radic Biol Med ; 217: 157-172, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552928

RESUMO

Obesity has significant repercussions for female reproductive health, including adverse effects on oocyte quality, fertility, embryo development and offspring health. Here, we showed that intermittent fasting (IF) has several notable effects on follicular development, oocyte development and maturation and offspring health in obese mice. IF treatment prevents obesity-associated germline-soma communication defects, mitochondrial dysfunction, oxidative damage, apoptosis, and spindle/chromosomal disruption. RNA-sequencing analysis of oocytes from normal diet (ND), high-fat diet (HFD), and HFD + IF mice indicated that IF treatment improved mitochondrial oxidative phosphorylation function and mRNA storage and translation, which was potentially mediated by the Smith-like family member 14 B (LSM14B). Knockdown of LSM14B by siRNA injection in oocytes from ND mice recapitulates all the translation, mitochondrial dysfunction and meiotic defect phenotypes of oocytes from HFD mice. Remarkably, the injection of Lsm14b mRNA into oocytes from HFD mice rescued the translation, mitochondrial dysfunction and meiotic defect phenotypes. These results demonstrated that dysfunction in the oocyte translation program is associated with obesity-induced meiotic defects, while IF treatment increased LSM14B expression and maternal mRNA translation and restored oocyte quality. This research has important implications for understanding the effects of obesity on female reproductive health and offers a potential nonpharmacological intervention to improve oocyte quality and fertility in obese individuals.


Assuntos
Jejum Intermitente , RNA Mensageiro Estocado , Animais , Feminino , Camundongos , Meiose , Camundongos Obesos , Doenças Mitocondriais/metabolismo , Obesidade/metabolismo , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/metabolismo
14.
Hemoglobin ; 48(1): 60-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38314576

RESUMO

Patients with the genotype of ß0/ß0 for ß-thalassemia (ß-thal) usually behave as ß-thal major (ß-TM) phenotype which is transfusion-dependent. The pathophysiology of ß-thal is the imbalance between α/ß-globin chains. The degree of α/ß-globin imbalance can be reduced by the more effective synthesis of γ-globin chains, and increased Hb F levels, modifying clinical severity of ß-TM. We report a Chinese child who had homozygous ß0-thal and a heterozygous KLF1 mutation. The patient had a moderate anemia since 6 months old, keeping a baseline Hb value of 8.0-9.0 g/dL. She had normal development except for a short stature (3rd percentile) until 6 years old, when splenomegaly and facial bone deformities occurred. Although genetic alteration of KLF1 expression in ß0/ß0 patients can result in some degree of disease alleviation, our case shows that it is insufficient to ameliorate satisfactorily the presentation. This point should be borne in mind for physicians who provide the genetic counseling and prenatal diagnosis to at-risk families.


Assuntos
Globinas beta , Talassemia beta , Criança , Feminino , Humanos , Lactente , alfa-Globinas/genética , Globinas beta/genética , Talassemia beta/genética , China , Seguimentos , Genótipo , Mutação
15.
Mol Ther ; 32(4): 878-889, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38311850

RESUMO

Cardiac fibrosis, a crucial pathological characteristic of various cardiac diseases, presents a significant treatment challenge. It involves the deposition of the extracellular matrix (ECM) and is influenced by genetic and epigenetic factors. Prior investigations have predominantly centered on delineating the substantial influence of epigenetic and epitranscriptomic mechanisms in driving the progression of fibrosis. Recent studies have illuminated additional avenues for modulating the progression of fibrosis, offering potential solutions to the challenging issues surrounding fibrosis treatment. In the context of cardiac fibrosis, an intricate interplay exists between m6A epitranscriptomic and epigenetics. This interplay governs various pathophysiological processes: mitochondrial dysfunction, mitochondrial fission, oxidative stress, autophagy, apoptosis, pyroptosis, ferroptosis, cell fate switching, and cell differentiation, all of which affect the advancement of cardiac fibrosis. In this comprehensive review, we meticulously analyze pertinent studies, emphasizing the interplay between m6A epitranscriptomics and partial epigenetics (including histone modifications and noncoding RNA), aiming to provide novel insights for cardiac fibrosis treatment.


Assuntos
Cardiopatias , Humanos , Adenina , Epigênese Genética , Fibrose
16.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339596

RESUMO

Composite materials are frequently exposed to external factors during their operational service, resulting in internal structural damage which subsequently impacts their structural performance. This paper employs ferromagnetic materials for their sensitivity to magnetic field strength. By detecting variations in the magnetic field within the embedded ferromagnetic microwires of composite materials, the aim is to indirectly assess the health status of the composite materials. Firstly, a theoretical numerical model for magnetic field intensity at the crack site was established. Subsequently, a finite element model was employed to analyze the variations in the magnetic characteristics of ferromagnetic microwires at the crack site. Under different parameter conditions, the patterns of magnetic signals at the crack site were determined. The results indicate that with an increase in the angle between the external magnetic field and the crack, the fitted curve of the magnetic signal shows a linear increase. The distance between the peak and valley of the radial magnetic signal in the axial direction decreases, and the axial magnetic signal transitions from double-peak to single-peak. With the increase in crack depth, the fitted curve of the magnetic signal shows a linear increase, and the magnetic signal at the crack tip also exhibits a linear increase. An increase in crack width leads to a non-linear decrease in the fitted curve of the magnetic signal, and after reaching a certain width, the magnetic signal stabilizes. For two identical cracks at different distances, the magnetic signal exhibits a transition from a complete pattern to two complete patterns. With the increase in the external magnetic field, the magnetic signal shows a completely regular linear increase. By analyzing and calculating the variations in magnetic signals, the patterns of magnetic characteristics under the damaged state of ferromagnetic microwires were obtained. This serves as a basis for assessing whether they can continue in service and for evaluating the overall health status of composite materials.

17.
Environ Res ; 244: 117902, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092237

RESUMO

Mercury (Hg) exposure is increasing in terrestrial birds; however, studies on its sources are scarce. In the present study, we elucidated the food composition of green-backed tit nestlings from three urban forest parks (CPL, AHL, and LCG) using live videography observation (LVO). Furthermore, the daily dietary intakes of inorganic Hg (IHg) (MDIIHg) and methylmercury (MeHg) (MDIMeHg) were determined using the Bayesian isotope mixing model (BIMM) to uncover the nestlings' specific dietary Hg contribution. Both LVO and BIMM indicated that Lepidoptera (primarily caterpillar) constituted the primary food source for the nestlings in the three forests, accounting for approximately 60% of their diet in all three forest parks. The estimated MDI of Hg revealed that lepidopterans and spiders primarily contributed to IHg exposure, with a co-contribution ratio of 71.8%-97.7%. Unexpectedly, dietary MeHg was mostly derived from spiders; the highest contribution ratio of 93.6% was recorded at CPL, followed by another peak ratio of 92.9% at LCG. However, the dietary exposure was primarily IHg, accounting for 69.8% (AHL), 62.0% (LCG), and 61.3% (CPL) of the nestlings. Our study findings highlight the importance of dietary IHg transfer in evaluating the effects of Hg in nestlings. LVO, coupled with BIMM, is an effective tool for determining the food compositions of songbird nestlings and estimating the contribution of specific diets.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Aves Canoras , Animais , Mercúrio/análise , Teorema de Bayes , Monitoramento Ambiental , Dieta , Isótopos
18.
Trends Endocrinol Metab ; 35(2): 164-175, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37949734

RESUMO

Cardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function. Moreover, lipids can exert diverse effects on cardiac fibrosis through different signaling pathways. In this review, we provide a brief overview of aberrant cardiac lipid metabolism and recent progress in pharmacological research targeting lipid metabolism alterations in cardiac fibrosis.


Assuntos
Cardiomiopatias , Miocárdio , Humanos , Miocárdio/metabolismo , Metabolismo dos Lipídeos , Reprogramação Metabólica , Miócitos Cardíacos/metabolismo , Cardiomiopatias/metabolismo , Fibrose , Lipídeos
19.
Chin J Integr Med ; 30(1): 52-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340203

RESUMO

OBJECTIVE: To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism. METHODS: B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR. RESULTS: In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells. CONCLUSIONS: Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.


Assuntos
Alocasia , Camundongos , Animais , Alocasia/metabolismo , Sistema de Sinalização das MAP Quinases , Caspase 3/metabolismo , Apoptose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Int J Biol Macromol ; 254(Pt 1): 127593, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898244

RESUMO

Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades. Non coding RNAs (microRNAs, lncRNAs, circRNAs) regulate the functions and behaviors of cardiac fibroblasts, including proliferation, migration, phenotypic transformation, inflammation, pyroptosis, apoptosis, autophagy, which can provide the basis for novel targeted therapeutic treatments that abrogate activation and inflammation of cardiac fibroblasts, induce different death pathways in cardiac fibroblasts, or make it sensitive to established pathogenic cells targeted cytotoxic agents and biotherapy. This review summarizes our current knowledge in this field of ncRNAs function in epigenetic regulation and fate determination of cardiac fibroblasts as well as the details of signaling pathways contribute to cardiac fibrosis. Moreover, we will comment on the emerging landscape of lncRNAs and circRNAs function in regulating signal transduction pathways, gene translation processes and post-translational regulation of gene expression in cardiac fibroblast. In the end, the prospect of cardiac fibroblasts targeted therapy for cardiac fibrosis based on ncRNAs is discussed.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Epigênese Genética , RNA Circular/metabolismo , RNA não Traduzido/genética , Fibrose , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Cardiotônicos/metabolismo , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA