Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vascul Pharmacol ; 150: 107169, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059212

RESUMO

Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.


Assuntos
AVC Isquêmico , MicroRNAs , Acidente Vascular Cerebral , Humanos , Células Endoteliais/metabolismo , Acidente Vascular Cerebral/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Endotélio Vascular/metabolismo , RNA Circular/metabolismo , AVC Isquêmico/genética
2.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361829

RESUMO

A metabolic illness known as non-alcoholic fatty liver disease (NAFLD), affects more than one-quarter of the world's population. Bile acids (BAs), as detergents involved in lipid digestion, show an abnormal metabolism in patients with NAFLD. However, BAs can affect other organs as well, such as the brain, where it has a neuroprotective effect. According to a series of studies, brain disorders may be extrahepatic manifestations of NAFLD, such as depression, changes to the cerebrovascular system, and worsening cognitive ability. Consequently, we propose that NAFLD affects the development of brain disease, through the bile acid signaling pathway. Through direct or indirect channels, BAs can send messages to the brain. Some BAs may operate directly on the central Farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) by overcoming the blood-brain barrier (BBB). Furthermore, glucagon-like peptide-1 (GLP-1) and the fibroblast growth factor (FGF) 19 are released from the intestine FXR and GPBAR1 receptors, upon activation, both of which send signals to the brain. Inflammatory, systemic metabolic disorders in the liver and brain are regulated by the bile acid-activated receptors FXR and GPBAR1, which are potential therapeutic targets. From a bile acid viewpoint, we examine the bile acid signaling changes in NAFLD and brain disease. We also recommend the development of dual GPBAR1/FXR ligands to reduce side effects and manage NAFLD and brain disease efficiently.


Assuntos
Encefalopatias , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácidos e Sais Biliares/metabolismo , Transdução de Sinais , Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Encefalopatias/metabolismo
3.
Neural Regen Res ; 14(11): 1941-1949, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31290452

RESUMO

Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid (HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit (NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 µg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1ß, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine (approval No. BUCM-3-2016040201-2003) in April 2016.

4.
Neurosci Lett ; 404(1-2): 83-6, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16806693

RESUMO

The macula lagena located at the apical end of the cochlea in birds is characterized by the presence of numerous otoliths with unclear sensory functions. These otoliths are reported to be similar to those in the vestibular system but their detailed features in morphology are unknown. In the present study, we examined the number, size and shape of otoliths from the macula lagena in Chinese domestic chickens (Gallus Ling Nan) with a scanning electron microscope for morphometry. For chickens aged 10-15 post-hatch days, the otoliths in each macula lagena were counted to be 16,055 +/- 4038 (mean +/- S.D., n = 4). The average length and width were 12.98 +/- 3.70 microm and 5.10 +/- 1.48 microm (n = 526 otoliths), respectively. The ratio of length to width for the otolith was 2.58 +/- 0.39 (n = 526 otoliths) and remained relatively constant despite their variations in physical size. Almost all the otoliths were in regular shape and appeared like isolated cylinders with smooth facets at each end, but a few of them (0.025% of 64,221 otoliths screened) were found to be in odd shapes, such as T-shape and cross-shape. The results suggest that otoliths in the macula lagena and those in the vestibular system of bird's inner ear have similar physical properties and may play a similar role in sensing gravitational and acceleration signals.


Assuntos
Máculas Acústicas/anatomia & histologia , Membrana dos Otólitos/anatomia & histologia , Máculas Acústicas/ultraestrutura , Animais , Galinhas , Microscopia Eletrônica de Varredura , Membrana dos Otólitos/ultraestrutura , Vestíbulo do Labirinto/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA