Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.821
Filtrar
1.
Neural Regen Res ; 20(1): 224-233, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767487

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00030/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery. Our previous in vitro study demonstrated that exosomes/small extracellular vesicles (sEVs) isolated from cerebral endothelial cells (CEC-sEVs) of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a (miR-27a) is an elevated miRNA in ischemic CEC-sEVs. In the present study, we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a (27a-sEVs) further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs. 27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector. Small EVs isolated from CECs transfected with a scramble vector (Scra-sEVs) were used as a control. Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs. An array of behavior assays was used to measure neurological function. Compared with treatment of ischemic stroke with Scra-sEVs, treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side, and significantly improved neurological outcomes. In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth. Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone, while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a, and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone. Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs. Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes. Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.

2.
Burns Trauma ; 12: tkad064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765787

RESUMO

Background: Hypertrophic scarring is the most serious and unmet challenge following burn and trauma injury and often leads to pain, itching and even loss of function. However, the demand for ideal scar prevention and treatment is difficult to satisfy. We aimed to discover the effects and mechanisms of adipose-derived stem cell (ADSC) exosomes in hypertrophic scarring. Methods: ADSC exosomes were isolated from the culture supernatant of ADSCs and identified by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The effect of ADSC exosomes on wound healing and scar formation was detected by the wound model of BALB/c mice. We isolated myofibroblasts from hypertrophic scar tissue and detected the cell viability, proliferation and migration of myofibroblasts. In addition, collagen formation and fibrosis-related molecules were also detected. To further disclose the mechanism of ADSC exosomes on fibrosis in myofibroblasts, we detected the expression of Smad2 in hypertrophic scar tissue and normal skin and the regulatory mechanism of ADSC exosomes on Smad2. Injection of bleomycin was performed in male BALB/c mice to establish an in vivo fibrosis model while ADSC exosomes were administered to observe their protective effect. The tissue injury of mice was observed via hematoxylin and eosin and Masson staining and related testing. Results: In this study, we found that ADSC exosomes could not only speed up wound healing and improve healing quality but also prevent scar formation. ADSC exosomes inhibited expression of fibrosis-related molecules such as α-smooth muscle actin, collagen I (COL1) and COL3 and inhibited the transdifferentiation of myofibroblasts. In addition, we verified that Smad2 is highly expressed in both hypertrophic scar tissue and hypertrophic fibroblasts, while ADSC exosomes downregulated the expression of Smad2 in hypertrophic fibroblasts. Further regulatory mechanism analysis revealed that microRNA-125b-5p (miR-125b-5p) is highly expressed in ADSC exosomes and binds to the 3' untranslated region of Smad2, thus inhibiting its expression. In vivo experiments also revealed that ADSC exosomes could alleviate bleomycin-induced skin fibrosis and downregulate the expression of Smad2. Conclusions: We found that ADSC exosomes could alleviate hypertrophic scars via the suppression of Smad2 by the specific delivery of miR-125b-5p.

3.
BMC Public Health ; 24(1): 1364, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773444

RESUMO

OBJECTIVE: Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) are considered gold standards for measuring visceral fat area (VFA). However, their relatively high prices and potential radiation exposure limit their widespread use in clinical practice and everyday life. Therefore, our study aims to develop a VFA estimated equation based on sagittal abdominal diameter (SAD) and transverse abdominal diameter (TAD) using anthropometric indexes. To the best of our knowledge, there have been limited studies investigating this aspect thus far. METHODS: This study was designed as a cross-sectional, retrospective cohort survey. A total of 288 patients (167 males and 121 females) aged 18-80 with type 2 diabetes (T2D) were consecutively collected from a multicenter hospital, and VFA was measured by CT. Subsequently, variables highly correlated with VFA were screened through general linear correlation analysis. A stepwise regression analysis was then conducted to develop a VFA estimated equation. Discrepancies between the estimated and actual VFA values were assessed using the Bland-Altman method to validate the accuracy of the equation. RESULTS: In the female T2D population, triglyceride (TG), SAD, TAD were found to be independently correlated with VFA; in the male T2D population, BMI, TG, SAD and TAD showed independent correlations with VFA. Among these variables, SAD exhibited the strongest correlation with VFA (r = 0.83 for females, r = 0.88 for males), followed by TAD (r = 0.69 for females, r = 0.79 for males). Based on these findings, a VFA estimated equation was developed for the T2D population: VFA (male) =-364.16 + 15.36*SAD + 0.77*TG + 9.41*TAD - 5.00*BMI (R2 = 0.75, adjusted R2 = 0.74); VFA(female)=-170.87 + 9.72*SAD-24.29*(TG^-1) + 3.93*TAD (R2 = 0.69, adjusted R2 = 0.68). Both models demonstrated a good fit. The Bland-Altman plot indicated a strong agreement between the actual VFA values and the estimated values, the mean differences were close to 0, and the majority of differences fell within the 95% confidence interval. CONCLUSIONS: In the T2D population, a VFA estimated equation is developed by incorporating SAD and TAD along with other measurement indices. This equation demonstrates a favorable estimated performance, suggesting to the development of novel and practical VFA estimation models in the future study.


Assuntos
Diabetes Mellitus Tipo 2 , Gordura Intra-Abdominal , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Gordura Intra-Abdominal/diagnóstico por imagem , Idoso , Adulto , Estudos Transversais , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Adolescente , Adulto Jovem , Tomografia Computadorizada por Raios X , Diâmetro Abdominal Sagital
4.
Angew Chem Int Ed Engl ; : e202401557, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775225

RESUMO

A regio- and stereoselective stepwise (4+2) annulation of N-propargylamides and α,ß-unsaturated imines/ketones has been accomplished with synergetic catalysis by a combination of a gold-complex and a chiral quinine-derived squaramide (QN-SQA), leading to highly functionalized chiral tetrahydropyridines/dihydropyrans in good to high yields with generally excellent enantioselectivity. Mechanistic studies and DFT calculations indicate that the in-situ formed alkylgold species is the key intermediate in this transformation, and the amide group served as a traceless directing group in this highly selective transformation. This method complements the enantioselective (4+2) annulation of allene reagents, providing the formal internal C-C π-bond cycloaddition products, which is challenging and remains elusive.

5.
Environ Sci Technol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776077

RESUMO

To date, dozens of pilot-scale microbial fuel cell (MFC) devices have been successfully developed worldwide for treating various types of wastewater. The availability and configurations of separators are determining factors for the economic feasibility, efficiency, sustainability, and operability of these devices. Thus, the concomitant advances between the separators and pilot-scale MFC configurations deserve further clarification. The analysis of separator configurations has shown that their evolution proceeds as follows: from ion-selective to ion-non-selective, from nonpermeable to permeable, and from abiotic to biotic. Meanwhile, their cost is decreasing and their availability is increasing. Notably, the novel MFCs configured with biotic separators are superior to those configured with abiotic separators in terms of wastewater treatment efficiency and capital cost. Herein, a highly comprehensive review of pilot-scale MFCs (>100 L) has been conducted, and we conclude that the intensive stack of the liquid cathode configuration is more advantageous when wastewater treatment is the highest priority. The use of permeable biotic separators ensures hydrodynamic continuity within the MFCs and simplifies reactor configuration and operation. In addition, a systemic comparison is conducted between pilot-scale MFC devices and conventional decentralized wastewater treatment processes. MFCs showed comparable cost, higher efficiency, long-term stability, and significant superiority in carbon emission reduction. The development of separators has greatly contributed to the availability and usability of MFCs, which will play an important role in various wastewater treatment scenarios in the future.

6.
Laryngoscope ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771155

RESUMO

OBJECTIVES: To investigate the role of periostin (POSTN) and the transforming growth factor ß (TGF-ß) pathway in the formation of laryngotracheal stenosis (LTS) scar fibrosis and to explore the specific signaling mechanism of POSTN-regulated TGF-ß pathway in tracheal fibroblasts. METHODS: Bioinformatics analysis was performed on scar data sets from the GEO database to preliminarily analyze the involvement of POSTN and TGF-ß pathways in fibrosis diseases. Expression of POSTN and TGF-ß pathway-related molecules was analyzed in LTS scar tissue at the mRNA and protein levels. The effect of POSTN on the biological behavior of tracheal fibroblasts was studied using plasmid DNA overexpression and siRNA silencing techniques to regulate POSTN expression and observe the activation of TGF-ß1 and the regulation of cell proliferation and migration via the TGF-ß/RHOA pathway. RESULTS: The bioinformatics analysis revealed that POSTN and the TGF-ß pathway are significantly involved in fibrosis diseases. High expression of POSTN and TGF-ß/RHOA pathway-related molecules (TGFß1, RHOA, CTGF, and COL1) was observed in LTS tissue at both mRNA and protein levels. In tracheal fibroblasts, overexpression or silencing of POSTN led to the activation of TGF-ß1 and regulation of cell proliferation and migration through the TGF-ß/RHOA pathway. CONCLUSION: POSTN is a key molecule in scar formation in LTS, and it regulates the TGF-ß/RHOA pathway to mediate the formation of cicatricial LTS by acting on TGF-ß1. This study provides insights into the molecular mechanisms underlying LTS and suggests potential therapeutic targets for the treatment of this condition. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

7.
ACS Nano ; 18(20): 13397-13405, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728672

RESUMO

Integrating anion-redox capacity with orthodox cation-redox capacity is deemed as a promising solution for high-energy-density battery cathodes surmounting the present technical bottlenecks. However, the evolution of oxidized oxygen species during the electrochemical or chemical process easily jeopardizes the reversibility of oxygen redox and remains poorly understood. Herein, we showcase the gradual conversion of the π-interacting oxygen (localized hole states on O) to the σ-interacting oxygen upon resting at a high voltage for P3-type Na0.6Li0.2Mn0.8O2 with nominally stable ribbon-like superstructure, accompanied by the O-O dimerization and the local structural reorganization. We further pinpoint an abnormal Li+ migration process from the alkali-metal layer to the transition-metal layer for desodiated P3-Na0.6Li0.2Mn0.8O2, thereby leading to a partial reconstruction of the ribbon superstructure. The high-voltage plateau of oxygen-redox cathodes is concluded to be exclusively controlled by the oxygen stabilization mechanism rather than the superstructure ordering. In addition, there exists a kinetic competition between π and σ interaction during the uninterrupted electrochemical process.

8.
Nature ; 629(8011): 341-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720041

RESUMO

Ordered layered structures serve as essential components in lithium (Li)-ion cathodes1-3. However, on charging, the inherently delicate Li-deficient frameworks become vulnerable to lattice strain and structural and/or chemo-mechanical degradation, resulting in rapid capacity deterioration and thus short battery life2,4. Here we report an approach that addresses these issues using the integration of chemical short-range disorder (CSRD) into oxide cathodes, which involves the localized distribution of elements in a crystalline lattice over spatial dimensions, spanning a few nearest-neighbour spacings. This is guided by fundamental principles of structural chemistry and achieved through an improved ceramic synthesis process. To demonstrate its viability, we showcase how the introduction of CSRD substantially affects the crystal structure of layered Li cobalt oxide cathodes. This is manifested in the transition metal environment and its interactions with oxygen, effectively preventing detrimental sliding of crystal slabs and structural deterioration during Li removal. Meanwhile, it affects the electronic structure, leading to improved electronic conductivity. These attributes are highly beneficial for Li-ion storage capabilities, markedly improving cycle life and rate capability. Moreover, we find that CSRD can be introduced in additional layered oxide materials through improved chemical co-doping, further illustrating its potential to enhance structural and electrochemical stability. These findings open up new avenues for the design of oxide cathodes, offering insights into the effects of CSRD on the crystal and electronic structure of advanced functional materials.

9.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731600

RESUMO

Rosa roxburghii Tratt pomace is rich in insoluble dietary fiber (IDF). This study aimed to investigate the influence of three modification methods on Rosa roxburghii Tratt pomace insoluble dietary fiber (RIDF). The three modified RIDFs, named U-RIDF, C-RIDF, and UC-RIDF, were prepared using ultrasound, cellulase, and a combination of ultrasound and cellulase methods, respectively. The structure, physicochemical characteristics, and functional properties of the raw RIDF and modified RIDF were comparatively analyzed. The results showed that all three modification methods, especially the ultrasound-cellulase combination treatment, increased the soluble dietary fiber (SDF) content of RIDF, while also causing a transition in surface morphology from smooth and dense to wrinkled and loose structures. Compared with the raw RIDF, the modified RIDF, particularly UC-RIDF, displayed significantly improved water-holding capacity (WHC), oil-binding capacity (OHC), and swelling capacity (SC), with increases of 12.0%, 84.7%, and 91.3%, respectively. Additionally, UC-RIDF demonstrated the highest nitrite ion adsorption capacity (NIAC), cholesterol adsorption capacity (CAC), and bile salt adsorption capacity (BSAC). In summary, the combination of ultrasound and cellulase treatment proved to be an efficient approach for modifying IDF from RRTP, with the potential for developing a functional food ingredient.


Assuntos
Fibras na Dieta , Rosa , Fibras na Dieta/análise , Rosa/química , Solubilidade , Celulase/metabolismo , Celulase/química , Adsorção
10.
BMC Vet Res ; 20(1): 191, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734611

RESUMO

BACKGROUND: Many proteins of African swine fever virus (ASFV, such as p72, p54, p30, CD2v, K205R) have been successfully expressed and characterized. However, there are few reports on the DP96R protein of ASFV, which is the virulence protein of ASFV and plays an important role in the process of host infection and invasion of ASFV. RESULTS: Firstly, the prokaryotic expression vector of DP96R gene was constructed, the prokaryotic system was used to induce the expression of DP96R protein, and monoclonal antibody was prepared by immunizing mice. Four monoclonal cells of DP96R protein were obtained by three ELISA screening and two sub-cloning; the titer of ascites antibody was up to 1:500,000, and the monoclonal antibody could specifically recognize DP96R protein. Finally, the subtypes of the four strains of monoclonal antibodies were identified and the minimum epitopes recognized by them were determined. CONCLUSION: Monoclonal antibody against ASFV DP96R protein was successfully prepared and identified, which lays a foundation for further exploration of the structure and function of DP96R protein and ASFV diagnostic technology.


Assuntos
Vírus da Febre Suína Africana , Anticorpos Monoclonais , Epitopos , Camundongos Endogâmicos BALB C , Proteínas Virais , Vírus da Febre Suína Africana/imunologia , Anticorpos Monoclonais/imunologia , Animais , Epitopos/imunologia , Camundongos , Proteínas Virais/imunologia , Anticorpos Antivirais/imunologia , Suínos , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Feminino
11.
Surgery ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734502

RESUMO

BACKGROUND: Despite the Barcelona Clinic Liver Cancer system discouraging hepatectomy for intermediate/advanced hepatocellular carcinoma, the procedure is still performed worldwide, particularly in Asia. This study aimed to develop and validate nomograms for predicting survival and recurrence for these patients. METHODS: We analyzed patients who underwent curative-intent hepatectomy for intermediate/advanced hepatocellular carcinoma between 2010 and 2020 across 3 Chinese hospitals. The Eastern Hepatobiliary Surgery Hospital cohort was used as the training cohort for the nomogram construction, and the Jilin First Hospital and Fujian Mengchao Hepatobiliary Hospital cohorts served as the external validation cohorts. Independent preoperative predictors for survival and recurrence were identified through univariable and multivariable Cox regression analyses. Predictive accuracy was measured using the concordance index and calibration curves. The predictive performance between nomograms and conventional hepatocellular carcinoma staging systems was compared. RESULTS: A total of 1,328 patients met the inclusion criteria. The nomograms for predicting survival and recurrence were developed using 10 and 6 independent variables, respectively. Nomograms' concordance indices in the training cohort were 0.777 (95% confidence interval 0.759-0.800) and 0.719 (95% confidence interval 0.697-0.742) for survival and recurrence, outperforming 4 conventional staging systems (P < .001). Nomograms accurately stratified risk into low, intermediate, and high subgroups. These results were validated well by 2 external validation cohorts. CONCLUSION: We developed and validated nomograms predicting survival and recurrence for patients with intermediate/advanced hepatocellular carcinoma, contradicting Barcelona Clinic Liver Cancer surgical guidelines. These nomograms may facilitate clinicians to formulate personalized surgical decisions, estimate long-term prognosis, and strategize neoadjuvant/adjuvant anti-recurrence therapy.

12.
ACS Omega ; 9(18): 20532-20546, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737084

RESUMO

The Ordos Basin is characterized by abundant natural gas resources, and the marine-continental transitional shale gas of the Permian Shanxi Formation has great exploration and development potential. However, few systematic studies have focused on the burial history, thermal maturity, and hydrocarbon generation of the shale, which limits the understanding of shale gas enrichment and resource evaluation. To reveal the shale gas resource potential, we focused on the Shanxi Formation shale in the southeastern Ordos Basin. Net erosion was estimated, and then one-dimensional (1D) and three-dimensional (3D) geological models were constructed using PetroMod to simulate the burial-thermal history and hydrocarbons generated in the Shanxi Formation shale, and finally, the gas generation intensity was evaluated. The results show that four periods of uplift and erosion events have occurred in the study area since the Mesozoic, of which the erosion in the Late Cretaceous was the most severe. The burial center gradually shifted from east to northwest in the study area, and the basin reached the maximum burial depth in the Late Cretaceous and then gradually changed to a monoclinal tilted east to west after uplift and erosion. The Shanxi Formation shale reached the hydrocarbon generation threshold at 233 Ma (Ro = 0.5%), reached the oil generation peak at 200 Ma (Ro = 1.0%), and entered the high maturity stage rapidly (Ro = 1.3%). Currently, the average maturity is approximately 2.48%, which is in the overmature stage. The center of shale maturity was in the southern part of the study area before the Late Jurassic and shifted northeast in the late Early Cretaceous. Cumulative gas generated to date is 44.0 × 1012 m3, and the center of gas generation was in the middle-eastern region of the study area before the Early-Middle Jurassic and shifted northwest in the Early Cretaceous. This study provides a theoretical basis and guidance for the exploration and development of marine-continental transitional shale in the Ordos Basin.

13.
Adv Mater ; : e2402968, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706203

RESUMO

Efferocytosis-mediated inflammatory reversal plays a crucial role in bone repairing process. However, in refractory bone defects, the macrophage continual efferocytosis may be suppressed due to the disrupted microenvironment homeostasis, particularly the loss of apoptotic signals and overactivation of intracellular oxidative stress. In this study, a polydopamine-coated short fiber matrix containing biomimetic "apoptotic signals" to reconstruct the microenvironment and reactivate macrophage continual efferocytosis for inflammatory reversal and bone defect repair is presented. The "apoptotic signals" (AM/CeO2) are prepared using CeO2 nanoenzymes with apoptotic neutrophil membrane coating for macrophage recognition and oxidative stress regulation. Additionally, a short fiber "biomimetic matrix" is utilized for loading AM/CeO2 signals via abundant adhesion sites involving π-π stacking and hydrogen bonding interactions. Ultimately, the implantable apoptosis-mimetic nanoenzyme/short-fiber matrixes (PFS@AM/CeO2), integrating apoptotic signals and biomimetic matrixes, are constructed to facilitate inflammatory reversal and reestablish the pro-efferocytosis microenvironment. In vitro and in vivo data indicate that the microenvironment biomimetic short fibers can activate macrophage continual efferocytosis, leading to the suppression of overactivated inflammation. The enhanced repair of rat femoral defect further demonstrates the osteogenic potential of the pro-efferocytosis strategy. It is believed that the regulation of macrophage efferocytosis through microenvironment biomimetic materials can provide a new perspective for tissue repair.

14.
Cancer Sci ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695305

RESUMO

Hepatocellular carcinoma (HCC), the most prevalent malignancy of the digestive tract, is characterized by a high mortality rate and poor prognosis, primarily due to its initial diagnosis at an advanced stage that precludes any surgical intervention. Recent advancements in systemic therapies have significantly improved oncological outcomes for intermediate and advanced-stage HCC, and the combination of locoregional and systemic therapies further facilitates tumor downstaging and increases the likelihood of surgical resectability for initially unresectable cases following conversion therapies. This shift toward high conversion rates with novel, multimodal treatment approaches has become a principal pathway for prolonged survival in patients with advanced HCC. However, the field of conversion therapy for HCC is marked by controversies, including the selection of potential surgical candidates, formulation of conversion therapy regimens, determination of optimal surgical timing, and application of adjuvant therapy post-surgery. Addressing these challenges and refining clinical protocols and research in HCC conversion therapy is essential for setting the groundwork for future advancements in treatment strategies and clinical research. This narrative review comprehensively summarizes the current strategies and clinical experiences in conversion therapy for advanced-stage HCC, emphasizing the unresolved issues and the path forward in the context of precision medicine. This work not only provides a comprehensive overview of the evolving landscape of treatment modalities for conversion therapy but also paves the way for future studies and innovations in this field.

15.
FASEB J ; 38(9): e23650, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696238

RESUMO

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Assuntos
Córtex Suprarrenal , Células Intersticiais do Testículo , Camundongos Knockout , Animais , Masculino , Camundongos , Células Intersticiais do Testículo/metabolismo , Córtex Suprarrenal/metabolismo , Androgênios/metabolismo , Testosterona/sangue , Testosterona/metabolismo , Comportamento Animal , Camundongos Endogâmicos C57BL
16.
Food Chem X ; 22: 101372, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699586

RESUMO

Pulsed electric field (PEF) is an innovative technique used to assist in the extraction of vegetable oils. There has been no research on the effects of PEF on virgin olive oil (VOO) quality and antioxidant activity to date. The present study aimed to analyze the effects of PEF on oil yield, quality, and in vitro antioxidant activity of "Koroneiki" extra virgin olive oil. The results show that the PEF treatment increased the oil yield by 5.6%, but had no significant effect on the saponification value, K232, K270, and ∆K value of the VOO. PEF treatment reduced the oleic acid content by 3.12%, but had no significant effect on the content of palmitic acid, linoleic acid, linolenic acid, arachidonic acid, stearic acid, oleic acid, and palmitic acid. After PEF treatment, the levels of total phenolics, total flavonoids, and oleuropein increased by 7.6%, 18.3% and 76%, respectively. There was no significant effect on the levels of 4 phenolic acids (vanillic acid, p-coumaric acid, ferulic acid and cinnamic acid), 2 lignans (lignans and apigenin), hydroxytyrosol, and 3 pigments (lutein, demagnetized chlorophyll, and carotenoids). In addition, PEF treatment significantly increased the content of tocopherols, with α, ß, γ, and δ tocopherols increasing by 9.8%, 10.7%, 13.6% and 38.4%, respectively. The free radical scavenging ability of DPPH and ABTS was also improved. In conclusion, the use of PEF significantly increased the yield of VOO oil as well as the levels of total phenolics, total flavonoids, oleuropein, tocopherol, and in vitro antioxidant activity.

17.
Ann Surg ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708888

RESUMO

OBJECTIVE: To compare the effect of balanced multielectrolyte solutions(BMES) versus normal saline(NS) for intravenous fluid on chloride levels and clinical outcomes.in patients with predicted severe acute pancreatitis (pSAP). SUMMARY BACKGROUND DATA: Isotonic crystalloids are recommended for initial fluid therapy in acute pancreatitis, but whether the use of BMES in preference to NS confers clinical benefits is unknown. METHODS: In this multicenter, stepped-wedge, cluster-randomized trial, we enrolled patients with pSAP (APACHE II score ≥8 and C-reactive protein >150 mg/L) admitted within 72 hours of the advent of symptoms. The study sites were randomly assigned to staggered start dates for one-way crossover from the NS phase (NS for intravenous fluid) to the BMES phase(Sterofudin for intravenous fluid). The primary endpoint was the serum chloride concentration on trial day3. Secondary endpoints included a composite of clinical and laboratory measures. RESULTS: Overall, 259 patients were enrolled from eleven sites to receive NS(n=147) or BMES(n=112). On trial day3, the mean chloride level was significantly lower in patients who received BMES(101.8 mmol/L(SD4.8) versus 105.8 mmol/L(SD5.9), difference -4.3 mmol/L [95%CI -5.6 to -3.0 mmol/L];P<0.001). For secondary endpoints, patients who received BMES had less systemic inflammatory response syndrome(19/112,17.0% versus 43/147,29.3%, P=0.024) and increased organ failure-free days (3.9 d(SD2.7) versus 3.5days(SD2.7), P<0.001) by trial day7. They also spent more time alive and out of ICU(26.4 d(SD5.2) versus 25.0days(SD6.4), P=0.009) and hospital(19.8 d(SD6.1) versus16.3days(SD7.2), P<0.001) by trial day30. CONCLUSIONS: Among patients with pSAP, using BMES in preference to NS resulted in a significantly more physiological serum chloride level, which was associated with multiple clinical benefits(Trial registration number: ChiCTR2100044432).

18.
Dev Biol ; 512: 13-25, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703942

RESUMO

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.

19.
Adv Sci (Weinh) ; : e2400297, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704675

RESUMO

It is newly revealed that collagen works as a physical barrier to tumor immune infiltration, oxygen perfusion, and immune depressor in solid tumors. Meanwhile, after radiotherapy (RT), the programmed death ligand-1 (PD-L1) overexpression and transforming growth factor-ß (TGF-ß) excessive secretion would accelerate DNA damage repair and trigger T cell exclusion to limit RT efficacy. However, existing drugs or nanoparticles can hardly address these obstacles of highly effective RT simultaneously, effectively, and easily. In this study, it is revealed that inducing mitochondria dysfunction by using oxidative phosphorylation inhibitors like Lonidamine (LND) can serve as a highly effective multi-immune pathway regulation strategy through PD-L1, collagen, and TGF-ß co-depression. Then, IR-LND is prepared by combining the mitochondria-targeted molecule IR-68 with LND, which then is loaded with liposomes (Lip) to create IR-LND@Lip nanoadjuvants. By doing this, IR-LND@Lip more effectively sensitizes RT by generating more DNA damage and transforming cold tumors into hot ones through immune activation by PD-L1, collagen, and TGF-ß co-inhibition. In conclusion, the combined treatment of RT and IR-LND@Lip ultimately almost completely suppressed the growth of bladder tumors and breast tumors.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38696290

RESUMO

Due to the objectivity of emotional expression in the central nervous system, EEG-based emotion recognition can effectively reflect humans' internal emotional states. In recent years, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have made significant strides in extracting local features and temporal dependencies from EEG signals. However, CNNs ignore spatial distribution information from EEG electrodes; moreover, RNNs may encounter issues such as exploding/vanishing gradients and high time consumption. To address these limitations, we propose an attention-based temporal graph representation network (ATGRNet) for EEG-based emotion recognition. Firstly, a hierarchical attention mechanism is introduced to integrate feature representations from both frequency bands and channels ordered by priority in EEG signals. Second, a graph convolutional neural network with top-k operation is utilized to capture internal relationships between EEG electrodes under different emotion patterns. Next, a residual-based graph readout mechanism is applied to accumulate the EEG feature node-level representations into graph-level representations. Finally, the obtained graph-level representations are fed into a temporal convolutional network (TCN) to extract the temporal dependencies between EEG frames. We evaluated our proposed ATGRNet on the SEED, DEAP and FACED datasets. The experimental findings show that the proposed ATGRNet surpasses the state-of-the-art graph-based mehtods for EEG-based emotion recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA