Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(6): 1407-1415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246908

RESUMO

Wearable glucose biosensors enable noninvasive glucose monitoring, thereby enhancing blood glucose management. In this work, we present a wearable biosensor based on carbon black nanoparticles (CBNPs) for glucose detection in human sweat. The biosensor consists of CBNPs, Prussian blue (PB), glucose oxidase, chitosan, and Nafion. The fabricated biosensor has a linear range of 5 µM to 1250 µM, sensitivity of 14.64 µA mM-1 cm-2, and a low detection potential (-0.05 V, vs. Ag/AgCl). The detection limit for glucose was calculated as 4.83 µM. This reusable biosensor has good selectivity and stability and exhibits a good response to glucose in real sweat. These results demonstrate the potential of our CBNP-based biosensor for monitoring blood glucose in human sweat.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Dispositivos Eletrônicos Vestíveis , Humanos , Suor , Fuligem , Glicemia , Automonitorização da Glicemia , Técnicas Biossensoriais/métodos , Glucose , Glucose Oxidase
2.
Nano Lett ; 23(23): 10710-10718, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38010943

RESUMO

Three-dimensional (3D) hanging drop cell culture is widely used in organoid culture because of its lack of selection pressure and rapid cell aggregation. However, current hanging drop technology has limitations, such as a dependence on complex microfluidic transport channels or specific capillary force templates for drop formation, which leads to unchangeable drop features. These methods also hinder live imaging because of space and complexity constraints. Here, we have developed a hanging drop construction method and created a flexible 3D hanging drop construction platform composed of a manipulation module and an adhesion module. Their harmonious operation allows for the easy construction of hanging drops of varying sizes, types, and patterns. Our platform produces a cell hanging drop chip with small sizes and clear fields of view, thereby making it compatible with live imaging. This platform has great potential for personalized medicine, cancer and drug discovery, tissue engineering, and stem cell research.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Técnicas de Cultura de Células/métodos , Microfluídica/métodos , Engenharia Tecidual/métodos , Diagnóstico por Imagem
3.
Artigo em Inglês | MEDLINE | ID: mdl-38033197

RESUMO

Colorectal cancer is one of the most common malignant tumors. At the advanced stage of colorectal cancer, cancer cells migrate with the blood to the liver from the hepatic portal vein, eventually resulting in a portal vein tumor thrombus (PVTT). To date, the progression of the early onset of PVTT [portal vein microthrombus (PVmT) induced by tumors] is unclear. Herein, we developed an on-chip PVmT model by loading the spheroid of colorectal cancer cells into the portal vein of a hepatic lobule chip (HLC). On the HLC, the progression of PVmT was presented, and early changes in metabolites of hepatic cells and in structures of hepatic plates and sinusoids induced by PVmT were analyzed. We replicated intrahepatic angiogenesis, thickened blood vessels, an increased number of hepatocytes, disordered hepatic plates, and decreased concentrations of biomarkers of hepatic cell functions in PVmT progression on a microfluidic chip for the first time. In addition, the combined therapy of thermo-ablation and chemo-drug for PVmT was preliminarily demonstrated. This study provides a promising method for understanding PVTT evolution and offers a valuable reference for PVTT therapy.

4.
ACS Biomater Sci Eng ; 9(9): 5430-5440, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603885

RESUMO

With the emergence of various cutting-edge micromachining technologies, lab on a chip is growing rapidly, but it is always a challenge to realize the on-chip separation of living cells from cell samples without affecting cell activity and function. Herein, we report a novel on-chip label-free method for sorting living and dead cells by integrating the hypertonic stimulus and tilted-angle standing surface acoustic wave (T-SSAW) technologies. On a self-designed microfluidic chip, the hypertonic stimulus is used to distinguish cells by producing volume differences between living and dead cells, while T-SSAW is used to separate living and dead cells according to the cell volume difference. Under the optimized operation conditions, for the sample containing 50% of living human umbilical vein endothelial cells (HUVECs) and 50% of dead HUVECs treated with paraformaldehyde, the purity of living cells after the first separation can reach approximately 80%, while after the second separation, it can be as high as 93%; furthermore, the purity of living cells after separation increases with the initial proportion of living cells. In addition, the chip we designed is safe for cells and can robustly handle cell samples with different cell types or different causes of cell death. This work provides a new design of a microfluidic chip for label-free sorting of living and dead cells, greatly promoting the multi-functionality of lab on a chip.


Assuntos
Microfluídica , Humanos , Movimento Celular , Células Endoteliais da Veia Umbilical Humana
5.
Biomater Adv ; 153: 213566, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536027

RESUMO

Triple-negative breast cancer (TNBC) is always the most challenging breast cancer subtype. Herein, brucine, encapsulated in peptide-modified liposomes, was proposed for treating TNBC by transdermal delivery. For the TD peptide-modified brucine-loaded liposome (Bru-TD-Lip) we developed, it presents high encapsulation efficiency of brucine and stability. In vitro, Bru-TD-Lip shows the enhanced percutaneous permeability of brucine, is able to readily enter TNBC cells, and significantly inhibits the proliferation, migration, and invasion of these cells. In vivo, through transdermal delivery, Bru-TD-Lip presents good biosafety and anti-tumor efficacy. The transdermal delivery of Bru-TD-Lip effectively targets and inhibits subcutaneous mammary carcinogenesis in female nude mice. Compared with oral administration, the transdermal delivery significantly reduces the damage of brucine to major organs and enhances the antitumor outcomes of brucine in treating TNBC. This study provides a new therapeutic strategy for treating triple-negative breast cancer by brucine.


Assuntos
Lipossomos , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Feminino , Lipossomos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Camundongos Nus , Peptídeos/uso terapêutico
6.
Mater Today Bio ; 21: 100724, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37483380

RESUMO

Tumor evolution is the accumulation of various tumor cell behaviors from tumorigenesis to tumor metastasis and is regulated by the tumor microenvironment (TME). However, the mechanism of solid tumor progression has not been completely elucidated, and thus, the development of tumor therapy is still limited. Recently, Tumor chips constructed by culturing tumor cells and stromal cells on microfluidic chips have demonstrated great potential in modeling solid tumors and visualizing tumor cell behaviors to exploit tumor progression. Herein, we review the methods of developing engineered solid tumors on microfluidic chips in terms of tumor types, cell resources and patterns, the extracellular matrix and the components of the TME, and summarize the recent advances of microfluidic chips in demonstrating tumor cell behaviors, including proliferation, epithelial-to-mesenchymal transition, migration, intravasation, extravasation and immune escape of tumor cells. We also outline the combination of tumor organoids and microfluidic chips to elaborate tumor organoid-on-a-chip platforms, as well as the practical limitations that must be overcome.

7.
Microsyst Nanoeng ; 9: 75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303831

RESUMO

Hepatic sinusoids play a key role in maintaining high activities of liver cells in the hepatic acinus. However, the construction of hepatic sinusoids has always been a challenge for liver chips, especially for large-scale liver microsystems. Herein, we report an approach for the construction of hepatic sinusoids. In this approach, hepatic sinusoids are formed by demolding a self-developed microneedle array from a photocurable cell-loaded matrix in a large-scale liver-acinus-chip microsystem with a designed dual blood supply. Primary sinusoids formed by demolded microneedles and spontaneously self-organized secondary sinusoids can be clearly observed. Benefiting from significantly enhanced interstitial flows by formed hepatic sinusoids, cell viability is witnessed to be considerably high, liver microstructure formation occurs, and hepatocyte metabolism is enhanced. In addition, this study preliminarily demonstrates the effects of the resulting oxygen and glucose gradients on hepatocyte functions and the application of the chip in drug testing. This work paves the way for the biofabrication of fully functionalized large-scale liver bioreactors.

9.
Biofabrication ; 15(3)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36898152

RESUMO

Glomerulus-on-a-chip, as a promising alternative for drug nephrotoxicity evaluation, is attracting increasing attention. For glomerulus-on-a-chip, the more biomimetic the chip is, the more convincing the application of the chip is. In this study, we proposed a hollow fiber-based biomimetic glomerulus chip that can regulate filtration in response to blood pressure and hormone levels. On the chip developed here, bundles of hollow fibers were spherically twisted and embedded in designed Bowman's capsules to form spherical glomerular capillary tufts, with podocytes and endotheliocytes cultured on the outer and inner surfaces of the hollow fibers, respectively. We evaluated the morphology of cells, the viability of cells, and the metabolic function of cells in terms of glucose consumption and urea synthesis by comparing the results obtained under fluidic and static conditions, confirmed the barrier function of the endotheliocyte-fiber membrane-podocyte structure by monitoring the diffusion of fluorescein isothiocyanate (FITC)-labeled inulin, albumin and IgG, and, for the first time, achieved on-chip filtration regulation in response to the hormone atrial natriuretic peptide. In addition, the application of the chip in the evaluation of drug nephrotoxicity was also preliminarily demonstrated. This work offers insights into the design of a more physiologically similar glomerulus on a microfluidic chip.


Assuntos
Glomérulos Renais , Podócitos , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/fisiologia , Células Endoteliais
10.
Biomed Microdevices ; 25(1): 8, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826720

RESUMO

Renal tubule chips have emerged as a promising platform for drug nephrotoxicity testing. However, the reported renal tubule chips hardly replicate the unique structure of renal tubules with thick proximal and distal tubules and a thin loop of Henle. In this study, we developed a fully structured scaffold-free vascularized renal tubule on a microfluidic chip. On the chip, the renal epithelial cell-laden hollow calcium-polymerized alginate tube with thick segments at both ends and a thin middle segment was U-shaped embedded in collagen hydrogel, parallel to the endothelial cell-laden hollow calcium-polymerized alginate tube with uniform tube diameter. After the alginate tubes were on-chip degraded, the renal epithelial cells and endothelial cells automatically attached to the collagen hydrogel and proliferated to form the renal tubule with proximal tubule, loop of Henle and distal tubule as well as peritubular blood vessel. We evaluated the viability of cells on the hollow alginate tubes, characterized the distribution and morphology of cells before and after the degradation of the alginate tube, and confirmed the proliferation of cells and the metabolic function of cells in terms of ATP synthesis, fibronectin secretion and VEGFR2 expression on the chip. The enhanced metabolic functions of renal epithelial cells and endothelial cells were preliminarily demonstrated. This study provides new insights into designing a more biomimetic renal tubule on a microfluidic chip.


Assuntos
Cálcio , Células Endoteliais , Colágeno , Hidrogéis , Alginatos
11.
Biotechnol Adv ; 63: 108093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36603801

RESUMO

Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (µPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review µPEDs, summarize the characteristics and functionalities of µPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for µPEDs. We also examine the recent application of µPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Analíticas Microfluídicas/métodos , Papel , Desenho de Equipamento , Dispositivos Lab-On-A-Chip
12.
J Mater Chem B ; 10(23): 4331-4345, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640492

RESUMO

MXenes have shown significant potential in a multitude of scientific domains as they provide substantial benefits over carbon graphene, such as ease of production and functionalization, large surface area, adjustable properties, biocompatibility and hydrophilicity. The morphologies and physicochemical properties of MXenes vary with the synthesis procedures and conditions. Very recently, unique hybrid MXene-based nanocomposites have been produced and applied in a variety of fields. Herein, we review the synthesis of MXenes from traditional chemical exfoliation methods to newly developing fluoride-independent hydrothermal methods, summarize the properties of the synthesized MXenes, including stability and oxidative sensitivity, and outline emerging approaches for MXene-based nanocomposites. We also elaborate the up-to-date bio-applications of MXenes in photothermal therapy, bio-imaging, sensing, and drug delivery, as well as the practical hurdles that must be addressed.


Assuntos
Grafite , Nanocompostos , Sistemas de Liberação de Medicamentos , Grafite/química , Nanocompostos/química
13.
Acta Biomater ; 134: 228-239, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265474

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has emerged as a public health concern. To date, the mechanism of NAFLD progression remains unclear, and pharmacological treatment options are scarce. Traditional animal NAFLD models are limited in helping address these problems due to interspecies differences. Liver chips are promising for modeling NAFLD. However, pre-existing liver chips cannot reproduce complex physicochemical microenvironments of the liver effectively; thus, NAFLD modeling based on these chips is incomplete. Herein, we develop a biomimetic liver lobule chip (LC) and then establish a more accurate on-chip NAFLD model. The self-developed LC achieves dual blood supply through the designed hepatic portal vein and hepatic artery and the microtissue cultured on the LC forms multiple structures similar to in vivo liver. Based on the LC, NAFLD is modeled. Steatosis is successfully induced and more importantly, changing lipid zonation in a liver lobule with the progression of NAFLD is demonstrated for the first time on a microfluidic chip. In addition, the application of the induced NAFLD model has been preliminarily demonstrated in the prevention and reversibility of promising drugs. This study provides a promising platform to understand NAFLD progression and identify drugs for treating NAFLD. STATEMENT OF SIGNIFICANCE: Liver chips are promising for modeling nonalcoholic fatty liver disease. However, on-chip replicating liver physicochemical microenvironments is still a challenge. Herein, we developed a liver lobule chip with dual blood supply, achieving self-organized liver microtissue that is similar to in vivo tissue. Based on the chip, we successfully modeled NAFLD under physiologically differentiated nutrient supplies. For the first time, the changing lipid zonation in a single liver lobule with the early-stage progression of NAFLD was demonstrated on a liver chip. This study provides a promising platform for modeling liver-related diseases.


Assuntos
Biomimética , Hepatopatia Gordurosa não Alcoólica , Animais , Fígado , Microfluídica , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos
14.
ACS Appl Mater Interfaces ; 13(28): 32640-32652, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34225454

RESUMO

Although various liver chips have been developed using emerging organ-on-a-chip techniques, it remains an enormous challenge to replicate the liver lobules with self-assembled perfusable hepatic sinusoid networks. Herein we develop a lifelike bionic liver lobule chip (LLC), on which the perfusable hepatic sinusoid networks are achieved using a microflow-guided angiogenesis methodology; additionally, during and after self-assembly, oxygen concentration is regulated to mimic physiologically dissolved levels supplied by actual hepatic arterioles and venules. This liver lobule design thereby produces more bionic liver microstructures, higher metabolic abilities, and longer lasting hepatocyte function than other liver-on-a-chip techniques that are able to deliver. We found that the flow through the unique micropillar design in the cell coculture zone guides the radiating assembly of the hepatic sinusoid, the oxygen concentration affects the morphology of the sinusoid by proliferation, and the oxygen gradient plays a key role in prolonging hepatocyte function. The expected breadth of applications our LLC is suited to is demonstrated by means of preliminarily testing chronic and acute hepatotoxicity of drugs and replicating growth of tumors in situ. This work provides new insights into designing more extensive bionic vascularized liver chips, while achieving longer lasting ex-vivo hepatocyte function.


Assuntos
Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Dispositivos Lab-On-A-Chip , Fígado/metabolismo , Acetaminofen/toxicidade , Animais , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Oxigênio/metabolismo , Testes de Toxicidade
15.
ACS Appl Mater Interfaces ; 13(17): 19768-19777, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33877794

RESUMO

Cancer is a multistep progressive disease that generally involves tumor growth, invasion, and metastasis. It is crucial to understand tumor progression for tumor diagnosis and therapy. However, tumor progression at an extremely early stage (EES) is barely demonstrated because EES tumors are too small to be detected by imaging. Herein, we, for the first time, replicated tumor progression at the EES on a microfluidic chip and uncovered the tumor behaviors affected by the tumor microenvironment. To mimic the progression of a single solid tumor at the EES, a HeLa cell spheroid was seeded and cultured on the chip, and a microvascular network was developed to integrate the microphysiological contexts around the tumor. We revealed not only the growth patterns and cell behaviors of tumor spheroids of different sizes under angiogenesis and fibroblast conditions but also the effect of tumor progression on peritumoral angiogenesis. We found that smaller tumors were more aggressive and that endotheliocytes and fibroblasts significantly accelerated both the proliferation and migration of tumor cells. In addition, we also first present the dynamic epithelial-mesenchymal transition process of tumor cells and the formation of vasculogenic mimicry at the EES. This work can provide insights for understanding tumor progression at the EES and offer new ideas for tumor therapy.


Assuntos
Dispositivos Lab-On-A-Chip , Neoplasias/patologia , Proliferação de Células , Progressão da Doença , Células HeLa , Humanos , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Esferoides Celulares
16.
Matter ; 4(3): 969-985, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398259

RESUMO

Smart contact lenses attract extensive interests due to their capability of directly monitoring physiological and ambient information. However, previous demonstrations usually lacked efficient sensor modalities, facile fabrication process, mechanical stability, or biocompatibility. Here, we demonstrate a flexible approach for fabrication of multifunctional smart contact lenses with an ultrathin MoS2 transistors-based serpentine mesh sensor system. The integrated sensor systems contain a photodetector for receiving optical information, a glucose sensor for monitoring glucose level directly from tear fluid, and a temperature sensor for diagnosing potential corneal disease. Unlike traditional sensors and circuit chips sandwiched in the lens substrate, this serpentine mesh sensor system can be directly mounted onto the lenses and maintain direct contact with tears, delivering high detection sensitivity, while being mechanically robust and not interfering with either blinking or vision. Furthermore, the in vitro cytotoxicity tests reveal good biocompatibility, thus holding promise as next-generation soft electronics for healthcare and medical applications.

17.
Anal Bioanal Chem ; 412(19): 4537-4548, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32440863

RESUMO

The hydraulic permeability of the lipid bilayer membrane of a single cell, a very important parameter in biological and medical fields, has been attracting increasing attention. To date, methods developed to determine this permeability are either operation-complicated or time-consuming. Therefore, we developed a chip for automatically and rapidly determining the permeability of cells that integrates microfluidics and cell impedance analysis. The chip is designed to automatically identify a single cell, capture the cell, and record the volume change in that cell. We confirmed the abilities of single-cell identification and capture with the upper and lower voltage thresholds determined, validated the performance of the differential electrode design for accurate cell volume measurements, deduced the extracellular osmotic pressure change in the presence of a hypertonic solution according to fluorescence intensity, and demonstrated the single-cell volume change recorded by the chip. Then, the accuracy of the permeability determined with the chip was verified using HeLa cells. Finally, the permeability of human-induced pluripotent stem cells (hiPSCs) was determined to be 0.47 ± 0.03 µm/atm/min. Using the chip, the permeability can be determined within 5 min. This study provides insights for the new design of an automatic single-cell identification and capture chip for single cell-related studies. Graphical abstract.


Assuntos
Permeabilidade da Membrana Celular , Tamanho Celular , Dispositivos Lab-On-A-Chip , Análise de Célula Única/instrumentação , Linhagem Celular , Impedância Elétrica , Desenho de Equipamento , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação
18.
J Tissue Eng Regen Med ; 12(12): 2266-2276, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30350403

RESUMO

In vitro engineering of liver tissue is a rapidly developing field for various biomedical applications. However, liver tissue culture is currently performed on only a small scale with a low density of hepatocytes. In this study, a simple design was introduced in a liver microsystem to enhance the transport of nutrients (e.g., oxygen and glucose) for the three-dimensional large-scale, high-density culture of hepatocytes. In this design, convection across the cell culture zone was generated to mimic sinusoid blood flow (SBF) based on the pressure difference between two fluids flowing in a countercurrent manner on either side of the cell culture zone. First, the distributions of living and dead cells in different culture subzones under various perfusion flow rates were observed, analysed, and compared. Then, the enhanced transport of nutrients was experimentally validated in relation to the viability of cells and theoretically explained by comparing the fluid velocity and oxygen concentration distribution in the cell culture zone in counterflow and coflow modes. Finally, the functions of the SBF-mimicked liver microsystem were assessed on the basis of specific metabolites, synthesized proteins, and bilirubin detoxification of hepatocytes, with collagen and alginate as extracellular matrices. Under this design, the density of hepatocytes cultured at the 3-mm-thickness scale reached ~7 × 107  cells/ml on Day 7, and the metabolism and detoxification functions of the cells worked well. In addition, a liver rope-like structure and sphere-like clusters of cells were observed. This work provides insight for the design of a bionic liver microsystem.


Assuntos
Hepatócitos/metabolismo , Fígado Artificial , Engenharia Tecidual , Biomimética , Velocidade do Fluxo Sanguíneo , Técnicas de Cultura de Células , Células Hep G2 , Hepatócitos/citologia , Humanos , Fígado/citologia , Fígado/metabolismo
19.
Cryobiology ; 81: 160-167, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29366764

RESUMO

In this work, we present a new version of the dilution-filtration system for rapidly deglycerolizing a large volume of cryopreserved blood. In our earlier system, one of the major problems was the damage induced to the red blood cells (RBCs) due to high osmolality change at the dilution point. Therefore, we devised a new system to solve this problem. First, we theoretically simulated the osmolality variation in the new system and the variation of the maximum and minimum volumes of the RBCs at the dilution point to examine the effects of operating parameters/conditions. Next, we experimentally validated the effects of these operating parameters by deglycerolizing porcine blood. The results show that when the initial NaCl concentration in the hypertonic solution is 18%, the volume of the hypertonic solution is 200 mL, and the flow rate of the filtrate is 50 mL/min, the system can effectively remove glycerin from 200 mL of porcine blood in 30 min, with ∼87% RBC survival rate and ∼73% RBC recovery rate. Our results indicated that in the new system the concentration and the volume of the hypertonic solution used to dilute the blood are the important parameters that need to be adjusted to reduce osmotic damage to the RBCs. In addition, a fast filtrate flow rate is highly recommended. This work can significantly contribute to the development of a more efficient and effective system for deglycerolizing large volumes of cryopreserved blood in clinic.


Assuntos
Preservação de Sangue/métodos , Criopreservação/métodos , Eritrócitos , Animais , Humanos , Suínos
20.
Eur Biophys J ; 47(3): 261-270, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28929205

RESUMO

Drug-loaded erythrocytes have been proposed for the treatment of disease. A common way to load drugs into erythrocytes is to apply osmotic shock. Currently, osmosis-based drug encapsulation is studied mainly experimentally, whereas a related theoretical model is still incomplete. In this study, a set of equations is developed to simulate the osmosis-based drug-encapsulation process. First, the modeling is validated with hemolysis rates and the drug-loaded quantities to be found in the literature. Then, the variation of the erythrocyte volume, formation of the pore on the erythrocyte membrane, and quantities of drug loaded into and hemoglobin released from erythrocytes are studied. Finally, an optimized operating condition for encapsulating drugs is proposed. The results show that the volume of erythrocytes exposed to hypotonic NaCl solution increases first and then abruptly decreases because of the pore formation; afterwards, it again increases and then decreases slowly. In the presence of the pore, the drug is loaded by diffusion, whereas the leak-induced convection goes against the loading. For an allowed 45% hemolysis rate, with a 10% hematocrit, the optimized NaCl concentration is 0.44%, the optimized time for sealing the loaded erythrocytes with hypertonic NaCl solution is at 6.5 s, and the quantity of albumin (drug) loaded is 4.5 mg/ml cells.


Assuntos
Eritrócitos/química , Modelos Biológicos , Osmose , Preparações Farmacêuticas/química , Cápsulas , Membrana Eritrocítica , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA