Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740959

RESUMO

The cellular stress response system in immune cells plays a crucial role in regulating the development of inflammatory diseases. In response to cellular damage or microbial infection, the assembly of the NLRP3 inflammasome induces pyroptosis and the release of inflammatory cytokines. Meanwhile, Angiogenin (Ang)-mediated transfer RNA-derived small RNAs (tsRNAs) promote cell survival under stressful conditions. While both tsRNAs and inflammasomes are induced under stress conditions, the interplay between these two systems and their implications in regulating inflammatory diseases remains poorly understood. In this study, it was demonstrated that Ang deficiency exacerbated sodium arsenite-induced activation of NLRP3 inflammasome and pyroptosis. Moreover, Ang-induced 5'-tsRNAs inhibited NLRP3 inflammasome activation and pyroptosis. Mechanistically, 5'-tsRNAs recruit DDX3X protein into stress granules (SGs), consequently inhibiting the interaction between DDX3X and NLRP3, thus leading to the suppression of NLRP3 inflammasome activation. Furthermore, in vivo results showed that Ang deficiency led to the downregulation of tsRNAs, ultimately leading to an exacerbation of NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation and type-2 diabetes-related inflammation. Altogether, our study sheds a new light on the role of Ang-induced 5'-tsRNAs in regulating NLRP3 inflammasome activation via SGs, and highlights tsRNAs as a promising target for the treatment of NLRP3 inflammasome-related diseases.

2.
Commun Biol ; 7(1): 314, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480799

RESUMO

Histopathologic diagnosis and classification of cancer plays a critical role in guiding treatment. Advances in next-generation sequencing have ushered in new complementary molecular frameworks. However, existing approaches do not independently assess both site-of-origin (e.g. prostate) and lineage (e.g. adenocarcinoma) and have minimal validation in metastatic disease, where classification is more difficult. Utilizing gradient-boosted machine learning, we developed ATLAS, a pair of separate AI Tumor Lineage and Site-of-origin models from RNA expression data on 8249 tumor samples. We assessed performance independently in 10,376 total tumor samples, including 1490 metastatic samples, achieving an accuracy of 91.4% for cancer site-of-origin and 97.1% for cancer lineage. High confidence predictions (encompassing the majority of cases) were accurate 98-99% of the time in both localized and remarkably even in metastatic samples. We also identified emergent properties of our lineage scores for tumor types on which the model was never trained (zero-shot learning). Adenocarcinoma/sarcoma lineage scores differentiated epithelioid from biphasic/sarcomatoid mesothelioma. Also, predicted lineage de-differentiation identified neuroendocrine/small cell tumors and was associated with poor outcomes across tumor types. Our platform-independent single-sample approach can be easily translated to existing RNA-seq platforms. ATLAS can complement and guide traditional histopathologic assessment in challenging situations and tumors of unknown primary.


Assuntos
Adenocarcinoma , Mesotelioma Maligno , Tumores Neuroendócrinos , Masculino , Humanos , Aprendizado de Máquina , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética
3.
Environ Res ; 252(Pt 1): 118815, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38555085

RESUMO

Accelerated urbanization in developing countries led to a typical gradient of human activities (low, moderate and high human activities), which affected the pollution characteristics and ecological functions of aquatic environment. However, the occurrence characteristics of typical persistent organic pollutants, including organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs), and bacterioplankton associated with the gradient of human activities in drinking water sources is still lacking. Our study focused on a representative case - the upper reaches of the Dongjiang River (Pearl River Basin, China), a drinking water source characterized by a gradient of human activities. A comprehensive analysis of PAHs, OCPs and bacterioplankton in the water phase was performed using gas chromatography-mass spectrometry (GC-MS) and the Illumina platform. Moderate human activity could increase the pollution of OCPs and PAHs due to local agricultural activities. The gradient of human activities obviously influenced the bacterioplankton community composition and interaction dynamics, and low human activity resulted in low bacterioplankton diversity. Co-occurrence network analysis indicated that moderate human activity could promote a more modular organization of the bacterioplankton community. Structural equation models showed that nutrients could exert a negative influence on the composition of bacterioplankton, and this phenomenon did not change with the gradient of human activities. OCPs played a negative role in shaping bacterioplankton composition under the low and high human activities, but had a positive effect under the moderate human activity. In contrast, PAHs showed a strong positive effect on bacterioplankton composition under low and high human activities and a weak negative effect under moderate human activity. Overall, these results shed light on the occurrence characteristics of OCPs, PAHs and their ecological effects on bacterioplankton in drinking water sources along the gradient of human activities.

4.
Plants (Basel) ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475412

RESUMO

Seed priming has become a practical pre-sowing strategy to deal with abiotic stresses. This study aims to explore the effects of polyethylene glycol (PEG) priming on seed germination and seedling growth of Scutellaria baicalensis Georgi under salt stress. Regardless of seed priming, salt stress significantly inhibited the seed germination and seedling growth of S. baicalensis. PEG priming significantly alleviates the inhibitory effects of salt stress on seed germination and seedling growth when compared to non-priming and water priming. Among all treatments, PEG priming exhibited the highest germination rate, germination potential, seed vigor index, fresh weight, dry weight, and plant length; the highest contents of proline, soluble sugar, and soluble protein; the highest K+/Na+ ratio and relative water content; the highest antioxidant activities and contents; but the lowest H2O2, malondialdehyde (MDA) content, and relative electrical conductivity in response to salt stress. In addition, PEG priming had the highest transcript levels of antioxidant-related genes among all treatments under NaCl stress. Taken together, the results demonstrated that seed priming with PEG could be recommended as an effective practice to enhance the germination and early seedling growth of S. baicalensis under saline conditions.

5.
Water Res ; 250: 121063, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171176

RESUMO

Upcycling nickel (Ni) to useful catalyst is an appealing route to realize low-carbon treatment of electroplating wastewater and simultaneously recovering Ni resource, but has been restricted by the needs for costly membranes or consumption of large amount of chemicals in the existing upcycling processes. Herein, a biological upcycling route for synchronous recovery of Ni and sulfate as electrocatalysts, with certain amount of ferric salt (Fe3+) added to tune the product composition, is proposed. Efficient biosynthesis of bio-NiFeS nanoparticles from electroplating wastewater was achieved by harnessing the sulfate reduction and metal detoxification ability of Desulfovibrio vulgaris. The optimal bio-NiFeS, after further annealing at 300 °C, served as an efficient oxygen evolution electrocatalyst, achieving a current density of 10 mA·cm-1 at an overpotential of 247 mV and a Tafel slope of 60.2 mV·dec-1. It exhibited comparable electrocatalytic activity with the chemically-synthesized counterparts and outperformed the commercial RuO2. The feasibility of the biological upcycling approach for treating real Ni-containing electroplating wastewater was also demonstrated, achieving 99.5 % Ni2+removal and 41.0 % SO42- removal and enabling low-cost fabrication of electrocatalyst. Our work paves a new path for sustainable treatment of Ni-containing wastewater and may inspire technology innovations in recycling/ removal of various metal ions.


Assuntos
Níquel , Águas Residuárias , Níquel/química , Galvanoplastia , Sulfatos , Compostos Férricos/química
6.
Free Radic Biol Med ; 210: 75-84, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992790

RESUMO

While antibiotics are designed to target bacteria specifically, most are known to affect host cell physiology. Certain classes of antibiotics have been reported to have immunosuppressive effects, but the underlying mechanisms remain elusive. Here, we show that doxycycline, a ribosomal-targeting antibiotic, effectively inhibited both mitochondrial translation and nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome-mediated caspase-1 activation and interleukin-1ß (IL-1ß) production in bone-marrow-derived macrophages (BMDMs). In addition, knockdown of mitochondrial methionyl-tRNA formyltransferase (Mtfmt), which is rate limiting for mitochondrial translation, also resulted in the inhibition of NLRP3 inflammasome-mediated caspase-1 activation and IL-1ß secretion. Furthermore, both doxycycline treatment and Mtfmt knockdown blocked the synthesis of mitochondrial DNA (mtDNA) and the generation of oxidized mtDNA (Ox-mtDNA), which serves as a ligand for NLRP3 inflammasome activation. In addition, in vivo results indicated that doxycycline mitigated NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation and endometritis. Taken together, the results unveil the antibiotics targeting the mitoribosome have the ability to mitigate NLRP3 inflammasome activation by inhibiting mitochondrial translation and mtDNA synthesis thus opening up new possibilities for the treatment of NLRP3-related diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Feminino , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Antibacterianos/farmacologia , Doxiciclina , Inflamação/tratamento farmacológico , Inflamação/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Caspase 1/metabolismo , Ribossomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL
7.
Water Res ; 250: 121055, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159544

RESUMO

Low-pressure catalytic membranes allow efficient rejection of particulates and simultaneously removing organics pollutant in water, but the accumulation of dissolved organic matters (DOM) on membrane surface, which cover the catalytic sites and cause membrane fouling, challenges their stable operation in practical wastewater treatment. Here we propose a ferric salt-based coagulation/co-catalytic membrane integrated system that can effectively mitigate the detrimental effects of DOM. Ferric salt (Fe3+) serving both as a DOM coagulant to lower the membrane fouling and as a co-catalyst with the membrane-embedded MoS2 nanosheets to drive perxymonosulfate (PMS) activation and pollutant degradation. The membrane functionalized with 2H-phased MoS2 nanosheets showed improved hydrophilicity and fouling resistance relative to the blank polysulfone membrane. Attributed to the DOM coagulation and co-catalytic generation of surface-bound radicals for decontamination at membrane surface, the catalytic membrane/PMS/ Fe3+ system showed much less membrane fouling and 2.6 times higher pollutant degradation rate in wastewater treatment than the catalytic membrane alone. Our work imply a great potential of coagulation/co-catalytic membrane integrated system for water purification application.


Assuntos
Poluentes Ambientais , Purificação da Água , Molibdênio , Membranas Artificiais , Ferro , Matéria Orgânica Dissolvida
8.
Environ Sci Pollut Res Int ; 31(5): 7214-7226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157162

RESUMO

Anthropogenic pollution poses a significant threat to drinking water sources worldwide. Previous studies have focused on the occurrence of pollutants in drinking water sources, but the impact of human activities on different types of pollutants in drinking water sources is still unclear. In this study, we chose the upper reaches of the Dongjiang River (URDR) as a case study to investigate the distribution characteristics of conventional pollutants, pesticides, and antibiotics along the gradient of human intervention. Our findings reveal that human activities can effect both conventional pollutants and emerging pollutants in the URDR to varying degrees. The escalation of human activities correlates with a rising trend in conventional pollutants, such as nitrogen (N) and phosphorus (P). Notably, only C1 (terrestrial humus) in dissolved organic matter (DOM) exhibits this increasing pattern. Pesticide and antibiotic concentrations are highest in areas with moderate and high levels of human activity, respectively, and the degree of eutrophication of drinking water closely follows the gradient of human activity. Our results also indicate that most pesticides pose a significant risk in the URDR, particularly pyrethroid pesticides (PYRs). Out of all antibiotics, only Norfloxacin (NFX) and Penicillin G (PENG) are classified as high-risk, with NFX exhibiting significant variation across different degrees of human activity. C1 and TP were the most important factors affecting the distribution of organophosphorus (OPPs) and PYRs, respectively. In conclusion, varying degrees of human activity exert differentiated influences on conventional and emerging pollutants in drinking water sources.


Assuntos
Água Potável , Poluentes Ambientais , Praguicidas , Poluentes Químicos da Água , Humanos , Água Potável/análise , Poluentes Químicos da Água/análise , Praguicidas/análise , Antibacterianos , Atividades Humanas , China , Rios , Monitoramento Ambiental/métodos
9.
iScience ; 26(11): 108224, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38107878

RESUMO

Menstruating individuals without access to adequate hygiene products often improvise with alternatives that pose health risks and limit their participation in society. We describe here a menstrual hygiene product based on low-cost materials, which are integrated onto fabrics to imbue unidirectional permeability. A body-facing "Janus" fabric top layer comprising ZnO tetrapods spray-coated onto polyester mosquito netting imparts hierarchical texturation, augmenting the micron-scale texturation derived from the weave of the underlying fabric. The asymmetric coating establishes a gradient in wettability, which underpins flash spreading and unidirectional permeability. The hygiene product accommodates a variety of absorptive media, which are sandwiched between the Janus layer and a second outward-facing coated densely woven fabric. An assembled prototype demonstrates outstanding ability to wick saline solutions and a menstrual fluid simulant while outperforming a variety of commercially alternatives. The results demonstrate a versatile menstrual health product that provides a combination of dryness, discretion, washability, and safety.

10.
Viruses ; 15(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005932

RESUMO

Human herpes simplex virus (HSV), a double-stranded DNA virus belonging to the Herpesviridae family and alpha herpesvirus subfamily, is one of the most epidemic pathogens in the population. Cell-to-cell spread is a special intercellular transmission mechanism of HSV that indicates the virulence of this virus. Through numerous studies on mutant HSV strains, many viral and host proteins involved in this process have been identified; however, the mechanisms remain poorly understood. Here, we evaluated the effect of the membrane protein genes US7 and UL56 on cell-to-cell spread in vitro between two HSV-1 (HB94 and HN19) strains using a plaque assay, syncytium formation assay, and the CRISPR/Cas9 technique. US7 knockout resulted in the inhibition of viral cell-to-cell spread; additionally, glycoprotein I (US7) of the HB94 strain was found to promote cell-to-cell spread compared to that of the HN19 strain. UL56 knockout did not affect plaque size and syncytium formation; however, the gene product of UL56 from the HN19 strain inhibited plaque formation and membrane infusion. This study presents preliminary evidence of the functions of US7 and UL56 in the cell-to-cell spread of HSV-1, which will provide important clues to reveal the mechanisms of cell-to-cell spread, and contributes to the clinical drugs development.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Glicoproteínas
11.
Life Sci ; 331: 122062, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666389

RESUMO

AIMS: Endometritis is a common inflammatory disorder affecting the reproductive health in both humans and livestock. The NLR family pyrin domain containing 3 (NLRP3) inflammasome has recently been identified as a possible therapeutic target for several inflammatory disorders. Bile acids (BAs) have been shown to possess anti-inflammatory properties by inhibiting the activation of the NLRP3 inflammasome. However, whether BAs ameliorate endometritis by targeting NLRP3 inflammasome remain poorly understood. MAIN METHODS: Female NLRP3+/+ and NLRP3-/- mice were subjected to uterine perfusion with lipopolysaccharide (LPS) to establish the endometritis model. For BAs pre-treatment, wild-type mice were administered oral gavage of BAs for seven days followed by uterine perfusion with LPS. All mice were euthanized and the uterine tissues were collected for analysis. KEY FINDINGS: The abundances of NLRP3 and interleukin-1 beta (IL-1ß) were significantly upregulated in the uterine tissues of endometritis mice. NLRP3 deficiency led to a reduction in the inflammatory response, neutrophil infiltration, and myeloperoxidase (MPO) activity in the uterus, as well as an inhibition of IL-1ß secretion. Moreover, BAs pre-treatment successfully decreased LPS-induced upregulation of NLRP3, ASC, and Caspase1, lessened histopathological alteration in the uterus, and notably reduced MPO activity and secretion of IL-1ß. SIGNIFICANCE: NLRP3 inflammasome is a promising target for endometritis treatment and BAs exhibit anti-inflammatory properties by repressing NLRP3 inflammasome activation, making them a possible novel therapeutic strategy for endometritis.


Assuntos
Endometrite , Humanos , Feminino , Animais , Camundongos , Endometrite/induzido quimicamente , Endometrite/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácidos e Sais Biliares
12.
Mater Horiz ; 10(10): 4354-4364, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37455554

RESUMO

Ladder-type structures can impart exceptional stability to polymeric electronic materials. This article introduces a new class of conductive polymers featuring a fully ladder-type backbone. A judicious molecular design strategy enables the synthesis of a low-defect ladder polymer, which can be efficiently oxidized and acid-doped to achieve its conductive state. The structural elucidation of this polymer and the characterization of its open-shell nature are facilitated with the assistance of studies on small molecular models. An autonomous robotic system is used to optimize the conductivity of the polymer thin film, achieving over 7 mS cm-1. Impressively, this polymer demonstrates unparalleled stability in strong acid and under harsh UV-irradiation, significantly surpassing commercial benchmarks like PEDOT:PSS and polyaniline. Moreover, it displays superior durability across numerous redox cycles as the active material in an electrochromic device and as the pseudocapacitive material in a supercapacitor device. This work provides structural design guidance for durable conductive polymers for long-term device operation.

13.
Int Immunopharmacol ; 121: 110407, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290328

RESUMO

Allograft rejection continues to be a significant cause of morbidity and graft failure for liver transplant recipients. Existing immunosuppressive regimens have many drawbacks, thus safe and effective long-term immunosuppressive regimens are still required. Luteolin (LUT), a natural component found in many plants, has a variety of biological and pharmacological effects and shows good anti-inflammatory activity in inflammatory and autoimmune diseases. Nevertheless, it remains unclear how it affects acute organ rejection after allogeneic transplantation. In this study, a rat liver transplantation model was constructed to investigate the effect of LUT on acute rejection of organ allografts. We found that LUT significantly protected the structure and function of liver grafts, prolonged recipient rat survival, ameliorated T cell infiltration, and downregulated proinflammatory cytokines. Moreover, LUT inhibited the proliferation of CD4+ T cells and Th cell differentiation but increased the proportion of Tregs, which is the key to its immunosuppressive effect. In vitro, LUT also significantly inhibited CD4+ T cell proliferation and Th1 differentiation. There may be important implications for improving immunosuppressive regimens for organ transplantation as a result of this discovery.


Assuntos
Linfócitos T CD4-Positivos , Rejeição de Enxerto , Imunossupressores , Transplante de Fígado , Luteolina , Luteolina/administração & dosagem , Animais , Ratos , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/imunologia , Aloenxertos/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Proliferação de Células , Masculino , Ratos Endogâmicos Lew , Ratos Endogâmicos BN , Subpopulações de Linfócitos T/citologia , Citocinas/sangue , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Imunossupressores/administração & dosagem
14.
Chemosphere ; 324: 138340, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893868

RESUMO

Nano zero-valent iron (nZVI) is extensively used as a peroxymonosulfate (PMS) activator but suffers from the ease of oxidation and agglomeration due to its high surface energy and inherent magnetism. Here, green and sustainable yeast was selected as a support material to firstly in-situ prepare yeast-supported Fe0@Fe2O3 and used for activating PMS to degrade tetracycline hydrochloride (TCH), one of the common antibiotics. Due to the anti-oxidation ability of the Fe2O3 shell and the support effect of yeast, the prepared Fe0@Fe2O3/YC exhibited a superior catalytic activity for the removal of TCH as well as some other typical refractory contaminants. The chemical quenching experiments and EPR results demonstrated SO4•- was the main reactive oxygen species while O2•-, 1O2 and •OH played a minor role. Importantly, the crucial role of the Fe2+/Fe3+ cycle promoted by the Fe0 core and surface iron hydroxyl species in PMS activation was elucidated in detail. The TCH degradation pathways were proposed by LC-MS and density functional theory (DFT) calculation. In addition, the outstanding magnetic separation property, anti-oxidation ability, and high environmental resistance of the catalyst were demonstrated. Our work may inspire the development of green, efficient, and robust nZVI-based materials for wastewater treatment.


Assuntos
Saccharomyces cerevisiae , Tetraciclina , Peróxidos/química , Ferro/química
15.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983072

RESUMO

Various studies have revealed the association of metabolic diseases with inflammation. Mitochondria are key organelles involved in metabolic regulation and important drivers of inflammation. However, it is uncertain whether the inhibition of mitochondrial protein translation results in the development of metabolic diseases, such that the metabolic benefits related to the inhibition of mitochondrial activity remain unclear. Mitochondrial methionyl-tRNA formyltransferase (Mtfmt) functions in the early stages of mitochondrial translation. In this study, we reveal that feeding with a high-fat diet led to the upregulation of Mtfmt in the livers of mice and that a negative correlation existed between hepatic Mtfmt gene expression and fasting blood glucose levels. A knockout mouse model of Mtfmt was generated to explore its possible role in metabolic diseases and its underlying molecular mechanisms. Homozygous knockout mice experienced embryonic lethality, but heterozygous knockout mice showed a global reduction in Mtfmt expression and activity. Moreover, heterozygous mice showed increased glucose tolerance and reduced inflammation, which effects were induced by the high-fat diet. The cellular assays showed that Mtfmt deficiency reduced mitochondrial activity and the production of mitochondrial reactive oxygen species and blunted nuclear factor-κB activation, which, in turn, downregulated inflammation in macrophages. The results of this study indicate that targeting Mtfmt-mediated mitochondrial protein translation to regulate inflammation might provide a potential therapeutic strategy for metabolic diseases.


Assuntos
Inflamação , Mitocôndrias , Animais , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Mitocondriais/metabolismo , Camundongos Knockout
16.
ACS Omega ; 8(6): 6078-6089, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816666

RESUMO

In this study, a dynamic simulator for three-phase gravity separators in oil production facilities is proposed. The mass conservation equation is established to calculate the pressure, water level, and oil level in the separator and the mass balance equation of the dispersed phase to calculate the oil-water separation efficiency. The proportional integral controllers are applied to control the water level, oil level, and pressure in the separator by setting the opening of the three outlet valves of oil, gas, and water. The model is verified using field data by means of the given valve opening and given proportional integral controller parameters, respectively. Subsequently, the verified simulator is applied to study the dynamic behavior of the separator filling process and the effect of pressure, oil level, and water level setpoint changes on the separator operating status. A detailed analysis of the changes in the liquid level, pressure, and opening of three outlet valves is presented. Then, the effects of operating conditions such as the inlet flow, water setpoint, and weir height on the separation efficiency are discussed. This simulator can be applied for the design of oil, gas, and water three-phase separation processes. In addition, through this simulator, the parameters that are difficult to be measured by instruments during the operation of the separator can be calculated, providing technical support for the construction of the digital twin of the separator.

17.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679290

RESUMO

Improving bonding and mechanical strengths is important for the application of bond coats used in the construction of steel deck bridges. Graphene nanoplatelets (GNPs) are attractive nanofillers for polymer modification because of their low cost, ultra-high aspect ratio, and extraordinary thermal and mechanical performance. In this paper, GNPs were used to reinforce the epoxy asphalt bond coat (EABC). The morphology, viscosity-time behavior, contact angle, dynamic mechanical properties, and mechanical and bonding strengths of GNP-reinforced EABCs were investigated using laser confocal microscopy, a Brookfield rotational viscometer, a contact angle meter, dynamic mechanical analysis, a universal test machine, and single-lap shear and pull-off adhesion tests. GNP dispersed non-uniformly in the asphalt phase of EABC. The viscosity of the neat EABC was lowered with the inclusion of GNPs and thus the allowable construction time was extended. The existence of GNPs enhances the hydrophobicity of the neat EABC. When adding more than 0.2% GNP, the storage modulus, crosslinking density and glass transition temperatures of both asphalt and epoxy of the neat EABC increased. The mechanical and bonding properties of the neat EABC were greatly enhanced with the incorporation of GNPs. Furthermore, the mechanical and bonding strengths of the modified EABCs increased with the GNP content. GNP-reinforced EABCs can be utilized in the pavement of long-span steel bridges with long durability.

18.
Chemosphere ; 311(Pt 1): 137084, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334754

RESUMO

Recently, pharmaceutical and personal care products (PPCPs) have been of wide concern due to their ecological toxicity, persistence, and ubiquity in aquatic environments. Peroxymonosulfate-based advanced oxidation processes (PMS-AOPs) have shown great potential for eliminating PPCPs due to their superior oxidation ability and adaptability. Biochar-based nanohybrids have been employed as emerging catalysts for peroxymonosulfate (PMS) activation. Until now, few researchers have summarized PMS activation by biochar-based catalysts for PPCPs removal. In this review, the types, sources, fates, and ecological toxicities of PPCPs were first summarized. Furthermore, various preparation and modification methods of biochar-based catalysts were systematically introduced. Importantly, the application of activating PMS with biochar-based multifunctional nanocomposites for eliminating PPCPs was reviewed. The influencing factors, such as catalysts dosage, PMS dosage, solution pH, temperature, anions, natural organic matters (NOMs), and pollutants concentration were broadly discussed. Biochar-based catalysts can act as electron donors, electron acceptors, and electron shuttles to activate PMS for the removal of PPCPs through radical pathways or/and non-radical pathways. The degradation mechanisms of PPCPs are correlated with persistent free radicals (PFRs), metal species, defective sites, graphitized degree, functional groups, electronic attributes, and the hybridization modes of biochar-based catalysts. Finally, the current problems and further research directions on the industrial application of biochar-based nanocomposites were proposed. This study provides some enlightenment for the efficient removal of PPCPs with biochar-based catalysts in PMS-AOPs.


Assuntos
Carvão Vegetal , Cosméticos , Peróxidos , Preparações Farmacêuticas
19.
Animals (Basel) ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38200869

RESUMO

Curcumin, the major active compound of turmeric, has shown potential benefits for poultry health and production in various studies. However, its specific role in enhancing the egg quality and liver health of laying hens, as well as its underlying mechanisms, have yet to be determined. Here, a total of 600 Su Qin No.1 Laying hens, aged 55 weeks and with similar laying rates, were randomly placed into five groups, with 10 replicates of 12 hens each. Curcumin doses of 0, 100, 200, 400, and 800 mg/kg were added to the basal diet to form the experimental groups. After an 8-week feeding period, no significant changes were observed in the production performance of laying hens due to curcumin supplementation. However, additional tests revealed that a 200 mg/kg curcumin supplementation improved albumen height, yolk color, Haugh unit, and eggshell thickness, while reducing the thin albumen's weight and proportion. This was accompanied by a significant down-regulation of the mRNA expression level of the Prolactin Receptor (Prlr) in the oviduct magnum. Furthermore, the number of hepatic lipid droplets and the hepatic triglyceride (TG) content, as well as malondialdehyde (MDA) levels were significantly reduced, indicating improved hepatic lipid metabolism and oxidative status. This was accompanied by a significant reduction in the expressions of sterol regulatory element binding protein-1 gene (Srebp-1), fatty acid synthase gene (Fasn), as well as fatty acid synthase (FASN), which are closely related to fatty acid synthesis in the liver. Overall, these findings suggest that curcumin supplementation at a dosage of 200 mg/kg could lead to significant improvements in egg quality and hepatic lipid metabolism.

20.
Materials (Basel) ; 15(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36234187

RESUMO

The bonding strength of the bond coat plays an important role in the composite action between the wearing surface and the deck plate of the orthotropic steel deck system. Poor bonding results in the delamination of the wearing surface from the deck plate. Graphene oxide (GO) possesses outstanding mechanical and thermal properties, as well as impressive multifunctional groups, which makes it an ideal reinforcement candidate for polymer matrices. In this study, graphene oxide was used to improve the bonding strength and toughness of the epoxy asphalt bond coat (EABC). The dispersion, hydrophobicity, viscosity-time behavior, phase-separated morphology, dynamic mechanical properties, pull-off strength, shear strength and mechanical performance of GO-modified EABCs were investigated using various techniques. The inclusion of GO improved the hydrophobicity of the unmodified EABC. The viscosity of the unmodified EABC was lowered with the addition of GO during curing. Moreover, the allowable construction time for the modified EABCs was extended with the GO loading. The incorporation of GO enhanced the stiffness of the unmodified EABC in the glassy and rubbery states. However, graphene oxide lowered the glass transition temperature of the asphalt of the unmodified EABC. Confocal microscopy observations revealed that GO was invisible in both the asphalt and epoxy phases of the EABC. The inclusion of GO improved the bonding strength, particularly at 60 °C, and mechanical properties of the unmodified EABC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA