Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(8): 2465-2475, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39144570

RESUMO

Claudin18.2 (CLDN18.2) has emerged as a significant target in the treatment of advanced gastric cancer. The screening of patients positive for CLDN18.2 is crucial for the effective application of targeted therapies specific to CLND18.2. In this study, we developed a novel nanobody-based probe, [99mTc]Tc-PHG102, for use in nuclear medicine. We analyzed its radiochemical yield and stability to ensure accurate probe characterization. Additionally, we assessed the probe's affinity and specificity toward the CLDN18.2 target and evaluated its efficacy in the BGC82318.2 xenograft model for SPECT/CT imaging of gastric cancer. The binding of [99mTc]Tc-PHG102 to HEK-293T18.2 and BGC82318.2 cells was notably higher than its binding to HEK-293T18.1, HEK-293T, and BGC823 cells, with bound values of 12.87 ± 1.46%, 6.16 ± 0.34%, 1.25 ± 0.22%, 1.14 ± 0.26%, and 1.32 ± 0.07% AD, respectively. The binding ability of [99mTc]Tc-PHG102 was significantly different between CLDN18.2-positive and negative cells (P < 0.001). Imaging results demonstrated a time-dependent tumor accumulation of the radiotracer. Notably, at 0.5 h postinjection, rapid accumulation was observed with an average tumor uptake of 4.63 ± 0.81% ID/cc (n = 3), resulting in clear tumor visualization. By 1 h postinjection, as [99mTc]Tc-PHG102 was rapidly metabolized, a decrease in uptake by other organs was noted. Preliminary clinical imaging trials further confirmed the safety and effectiveness of the probe, indicating specificity for lesions expressing CLDN18.2 in gastric cancer and favorable in vivo metabolic properties. In conclusion, the nanobody-based probe [99mTc]Tc-PHG102 proves to be a safe and effective tool for detecting CLDN18.2 expression levels in gastric cancer tumors and for screening CLDN18.2-positive patients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38926162

RESUMO

PURPOSE: Claudin18.2 (CLDN18.2) is a novel target for diagnosis and therapy of gastrointestinal cancer. This study aimed to evaluate the safety and feasibility of a novel CLDN18.2-targeted nanobody, PMD22, labeled with gallium-68 ([68Ga]Ga), for detecting CLDN18.2 expression in patients with gastrointestinal cancer using PET/CT imaging. METHODS: [68Ga]Ga-PMD22 was synthesized based on the nanobody, and its cell binding properties were assayed. Preclinical pharmacokinetics were determined in CLDN18.2-positive xenografts using microPET/CT. Effective dosimetry of [68Ga]Ga-PMD22 was evaluated in 5 gastrointestinal cancer patients, and PET/CT imaging of [68Ga]Ga-PMD22 and [18F]FDG were performed head-to-head in 16 gastrointestinal cancer patients. Pathological tissues were obtained for CLDN18.2 immunohistochemical (IHC) staining and comparative analysis with PET/CT findings. RESULTS: Cell binding assay showed that [68Ga]Ga-PMD22 had a higher binding ability to AGSCLDN18.2 and BGC823CLDN18.2 cells than to AGS and BGC823 cells (p < 0.001). MicroPET/CT images showed that [68Ga]Ga-PMD22 rapidly accumulated in AGSCLDN18.2 and BGC823CLDN18.2 tumors, and high contrast tumor to background imaging was clearly observed. In the pilot study, the effective dose of [68Ga]Ga-PMD22 was 1.68E-02 ± 1.45E-02 mSv/MBq, and the CLDN18.2 IHC staining result was highly correlated with the SUVmax/BKGstomach of [68Ga]Ga-PMD22 (rs = 0.848, p < 0.01). CONCLUSION: A novel [68Ga]Ga-labeled nanobody probe targeting CLDN18.2, [68Ga]Ga-PMD22, was established and preliminarily proved to be safe and effective in revealing CLDN18.2-positive gastrointestinal cancer, providing a basis for the clinical translation of the agent. CLINICAL TRIAL REGISTRATION: This study was registered on the ClinicalTrials.gov (NCT05937919).

3.
J Nucl Med ; 65(6): 856-863, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38604764

RESUMO

68Ga-labeled nanobody (68Ga-NC-BCH) is a single-domain antibody-based PET imaging agent. We conducted a first-in-humans study of 68Ga-NC-BCH for PET to determine its in vivo biodistribution, metabolism, radiation dosimetry, safety, and potential for quantifying claudin-18 isoform 2 (CLDN18.2) expression in gastrointestinal cancer patients. Methods: Initially, we synthesized the probe 68Ga-NC-BCH and performed preclinical evaluations on human gastric adenocarcinoma cell lines and xenograft mouse models. Next, we performed a translational study with a pilot cohort of patients with advanced gastrointestinal cancer on a total-body PET/CT scanner. Radiopharmaceutical biodistribution, radiation dosimetry, and the relationship between tumor uptake and CLDN18.2 expression were evaluated. Results: 68Ga-NC-BCH was stably prepared and demonstrated good radiochemical properties. According to preclinical evaluation,68Ga-NC-BCH exhibited rapid blood clearance, high affinity for CLDN18.2, and high specific uptake in CLDN18.2-positive cells and xenograft mouse models. 68Ga-NC-BCH displayed high uptake in the stomach and kidney and slight uptake in the pancreas. Compared with 18F-FDG, 68Ga-NC-BCH showed significant differences in uptake in lesions with different levels of CLDN18.2 expression. Conclusion: A clear correlation was detected between PET SUV and CLDN18.2 expression, suggesting that 68Ga-NC-BCH PET could be used as a companion diagnostic tool for optimizing treatments that target CLDN18.2 in tumors.


Assuntos
Claudinas , Radioisótopos de Gálio , Neoplasias Gastrointestinais , Imagem Corporal Total , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Claudinas/metabolismo , Feminino , Neoplasias Gastrointestinais/diagnóstico por imagem , Neoplasias Gastrointestinais/metabolismo , Masculino , Distribuição Tecidual , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Compostos Radiofarmacêuticos/farmacocinética
4.
Mol Pharm ; 21(4): 1977-1986, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395797

RESUMO

The expression level of PD-L1 in tumor tissue is considered one of the effective biomarkers to guide PD-1/PD-L1 therapy. Quantifying whole-body PD-L1 expression by SPECT imaging may help in selecting patients that potentially respond to PD-1/PD-L1 therapy. Nanobody is the smallest antibody fragment with antigen-binding ability that is well suited for radionuclide imaging. Nevertheless, high retention of radioactivity in the kidney may limit its clinical translation. The present study aimed to screen, design, and prepare a nanobody-based SPECT probe with rapid renal clearance to evaluate the PD-L1 expression level in vivo noninvasively. A phage library was constructed by immunizing alpaca with recombinant human PD-L1 protein, and 17 anti-PD-L1 nanobodies were screened by the phage display technique. After sequence alignment and flow cytometry analysis, APN09 was selected as the candidate nanobody, and a GGGC chelator was attached to its C-terminus for 99mTc labeling to prepare a SPECT imaging probe. The affinity and specificity of 99mTc-APN09 were evaluated by protein and cell-binding experiments, and SPECT imaging and biodistribution were performed in a mouse model with bilateral transplantation of A549 and A549PD-L1 tumors. The ability of 99mTc-APN09 to quantify the PD-L1 expression level in vivo was validated in tumor models with different PD-L1 expression levels. 99mTc-APN09 had a radiochemical purity higher than 99% and a binding equilibrium dissociation constant of 21.44 ± 1.65 nM with hPD-L1, showing high affinity. SPECT imaging results showed that 99mTc-APN09 could efficiently detect PD-L1-positive tumors within 0.5 h, and the quantitative results of SPECT were well correlated with the expression level of PD-L1 in cell lines. SPECT imaging and biodistribution results also showed that 99mTc-APN09 was rapidly cleared from the kidney in 2 h postinjection. 99mTc-APN09 was a simple and stable tool for visualizing PD-L1 expression in the whole body. In addition, due to its significant reduction in renal retention, it has better prospects for clinical translation.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Camelídeos Americanos
5.
Mol Pharm ; 19(7): 2583-2594, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35696536

RESUMO

Daratumumab (DARA) is an anti-CD38 monoclonal antibody for the treatment of multiple myeloma (MM). The tumor CD38 expression level is one of the important factors in determining the efficacy of DARA treatment. Therefore, there is an urgent clinical need for a noninvasive tool to evaluate the CD38 levels in cancer patients before, during, and after DARA treatment. In this study, we prepared a new molecular imaging probe 99mTc-CD3813, the 99mTc-labeled nanobody CD3813, for noninvasive imaging of CD38 expression by single photon emission computed tomography (SPECT). We evaluated 99mTc-CD3813 for its CD38 affinity and specificity and its capacity to image the CD38 expression in the MM and lymphoma xenografts models. 99mTc-CD3813 SPECT/CT is able to visualize subcutaneous/orthotopic myeloma lesions in animal models and has advantages over 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. Excess DARA has less impact on its tumor uptake (3.14 ± 0.83 vs 2.29 ± 0.91 %ID/g, n.s.), strongly suggesting that there is no competition between 99mTc-CD3813 and DARA in binding to CD38. 99mTc-CD3813 SPECT/CT revealed significant reduction in CD38 expression in the Ramos-bearing mice under DARA treatment, as evidenced by their reduced tumor uptake (3.04 ± 0.70 vs 1.07 ± 0.28 %ID/cc, P < 0.001). 99mTc-CD3813 SPECT/CT was also able to detect the increased tumor uptake (0.79 ± 0.29 vs 2.12 ± 0.12 %ID/cc, P < 0.001) due to the upregulation of CD38 levels caused by all-trans retinoic acid infection. 99mTc-CD3813 is a promising SPECT radiotracer for imaging the CD38-positive tumors and has clinical potential as a molecular imaging tool for evaluation of the CD38 expression level in patients before, during, and after DARA treatment.


Assuntos
Mieloma Múltiplo , Animais , Linhagem Celular Tumoral , Fluordesoxiglucose F18 , Humanos , Camundongos , Imagem Molecular/métodos , Sondas Moleculares , Mieloma Múltiplo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único/métodos
6.
Bioconjug Chem ; 33(7): 1328-1339, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35687724

RESUMO

Nanobodies have been developed rapidly as targeted probes for molecular imaging owing to their high affinity, outstanding tissue penetration, and rapid blood clearance. However, the short retention time at the tumor site limits their application in targeted radionuclide therapy. In this study, we designed a dual-targeting nanobody referred to as MIRC213-709, which can specifically bind to the HER2 receptor in tumor cell lines with high affinity (by nanobody MIRC213) and endogenous IgG in plasma to prolong the half-life by the MIRC213 C-terminal fusion nanobody, MIRC709. The nanobodies were site-specifically radiolabeled with 99mTc and 177Lu, and radiochemical purity was >95% after purification. The long blood circulation time and tumor retention property of 99mTc/177Lu-MIRC213-709 were confirmed by a blood clearance assay, single-photon emission computed tomography (SPECT), and a biodistribution study. The blood clearance assay showed that the distribution phase half-life (T1/2α) and elimination phase half-life (T1/2ß) of 99mTc-MIRC213-709 were 6.74- and 19.04-fold longer than those of 99mTc-MIRC213, respectively. The SPECT/CT and biodistribution results showed that the highest uptake of 177Lu-MIRC213 in the NCI-N87 model was 5.24 ± 0.95% ID/g at 6 h p.i., while the highest uptake of 177Lu-MIRC213-709 in the NCI-N87 model was 30.82 ± 7.29% ID/g at 48 h p.i. Compared with 177Lu-MIRC213, 177Lu-MIRC213-709 had a 16.9-fold increased tumor cumulative uptake (2606 ± 195.1 vs 153.9 ± 22.37% ID/g·h). The targeted radionuclide therapy assay was performed in the NCI-N87 tumor model, and treatment monitoring ended on day 32. The post-treatment/pretreatment tumor volumes were 12.99 ± 1.66, 3.58 ± 0.96, 1.26 ± 0.17, and 1.54 ± 0.50 in the 0, 9, and 18 MBq single-dose groups and the two 9 MBq divided dose group (14 days apart), respectively. All treatment groups showed significant therapeutic effects (P < 0.0001). Thus, fusion with the IgG-binding nanobody MIRC709 provides MIRC213 derivatives with improved metabolic properties for targeted radionuclide therapy.


Assuntos
Anticorpos de Domínio Único , Linhagem Celular Tumoral , Meia-Vida , Imunoglobulina G , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/química , Anticorpos de Domínio Único/uso terapêutico , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA