Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406392, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775364

RESUMO

Though platinum (Pt)-based complexes have been recently exploited as immunogenic cell death (ICD) inducers for activating immunotherapy, the effective activation of sufficient immune responses with minimal side effects in deep-seated tumors remains a formidable challenge. Herein, we propose the first example of a near-infrared (NIR) light-activated and lysosomal targeted Pt(II) metallacycle (1) as a supramolecular ICD inducer. 1 synergistically potentiates immunomodulatory response in deep-seated tumors via multiple-regulated approaches, involving NIR light excitation, boosted reactive oxygen species (ROS) generation, good selectivity between normal and tumor cells, and enhanced tumor penetration/retention capabilities. Specifically, 1 has excellent depth-activated ROS production (~7 mm), accompanied by strong anti-diffusion and anti-ROS quenching ability. In vitro experiments demonstrate that 1 exhibits significant cellular uptake and ROS generation in tumor cells as well as respective multicellular tumor spheroids. Based on these advantages, 1 induces a more efficient ICD in an ultralow dose (i.e., 5 µM) compared with the clinical ICD inducer-oxaliplatin (300 µM). In vivo, vaccination experiments further demonstrate that 1 serves as a potent ICD inducer through eliciting CD8+/CD4+ T cell response and Foxp3+ T cell depletion with negligible adverse effects. This study pioneers a promising avenue for safe and effective metal-based ICD agents in immunotherapy.

2.
J Am Chem Soc ; 146(13): 8991-9003, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513217

RESUMO

Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 µM) compared to the conventional anticancer agent, oxaliplatin (300 µM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Rutênio , Humanos , Rutênio/farmacologia , Espécies Reativas de Oxigênio , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Lisossomos , Linhagem Celular Tumoral
3.
Angew Chem Int Ed Engl ; 63(15): e202319966, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38327168

RESUMO

Albeit sonodynamic therapy (SDT) has achieved encouraging progress in microbial sterilization, the scarcity of guidelines for designing highly effective sonosensitizers and the intricate biofilm microenvironment (BME), substantially hamper the therapeutic efficacy against biofilm infections. To address the bottlenecks, we innovatively design a Ru(II) metallacycle-based sonosensitizer/sonocatalyst (named Ru-A3-TTD) to enhance the potency of sonotherapy by employing molecular engineering strategies tailored to BME. Our approach involves augmenting Ru-A3-TTD's production of ultrasonic-triggered reactive oxygen species (ROS), surpassing the performance of commercial sonosensitizers, through a straightforward but potent π-expansion approach. Within the BME, Ru-A3-TTD synergistically amplifies sonotherapeutic efficacy via triple-modulated approaches: (i) effective alleviation of hypoxia, leading to increased ROS generation, (ii) disruption of the antioxidant defense system, which shields ROS from glutathione consumption, and (iii) enhanced biofilm penetration, enabling ROS production in deep sites. Notably, Ru-A3-TTD sono-catalytically oxidizes NADPH, a critical coenzyme involved in antioxidant defenses. Consequently, Ru-A3-TTD demonstrates superior biofilm eradication potency against multidrug-resistant Escherichia coli compared to conventional clinical antibiotics, both in vitro and in vivo. To our knowledge, this study represents the pioneering instance of a supramolecular sonosensitizer/sonocatalyst. It provides valuable insights into the structure-activity relationship of sonosensitizers and paves a promising pathway for the treatment of biofilm infections.


Assuntos
Antioxidantes , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes , Coenzimas , Escherichia coli , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Analyst ; 149(3): 859-869, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38167646

RESUMO

High efficiency, stability, long emission wavelength (NIR-II), and good biocompatibility are crucial for photosensitizers in phototherapy. However, current Food and Drug Administration (FDA)-approved organic fluorophores exhibit poor chemical stability and photostability as well as short emission wavelength, limiting their clinical usage. To address this, we developed Se-IR1100, a novel organic photosensitizer with a photostable and thermostable benzobisthiadiazole (BBTD) backbone. By incorporating selenium as a heavy atom and constructing a D-A-D structure, Se-IR1100 exhibits a maximum fluorescence emission wavelength of 1100 nm. Compared with FDA-approved indocyanine green (ICG), DSPE-PEGylated Se-IR1100 nanoparticles exhibit prominent photostability and long-lasting photothermal effects. Upon 808 nm laser irradiation, Se-IR1100 NPs efficiently convert light energy into heat and reactive oxygen species (ROS), inducing cancer cell death in cellular studies and living organisms while maintaining biocompatibility. With salient photostability and a photothermal conversion rate of 55.37%, Se-IR1100 NPs hold promise as a superior photosensitizer for diagnostic and therapeutic agents in oncology. Overall, we have designed and optimized a multifunctional photosensitizer Se-IR1100 with good biocompatibility that performs NIR-II fluorescence imaging and phototherapy. This dual-strategy method may offer novel approaches for the development of multifunctional probes using dual-strategy or even multi-strategy methods in bioimaging, disease diagnosis, and therapy.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Verde de Indocianina/toxicidade , Nanopartículas/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA