Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 100: 105912, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069215

RESUMO

Studying percutaneous penetration of various cosmetic ingredients through intact and compromised skin can provide insight on quantitative exposure assessment for baby products intended for diapered skin. We developed an in vitro model (tape-stripped human skin) designed to achieve the Trans-Epidermal Water Loss values measured in babies with various degrees of diaper dermatitis. Six reference compounds showed the impact of physicochemical properties on absorption through this "diaper rash" skin model. Under simulated diaper conditions, dermal absorption of cosmetic ingredients (phenoxyethanol, sodium benzoate, benzyl alcohol, disodium EDTA, and propylene glycol) was different, but <100%. Additionally, the effect of diaper rash on dermal absorption of well-absorbed ingredients (phenoxyethanol, sodium benzoate, and benzyl alcohol) was limited (enhancement of 1.1-1.3), while the enhancement for moderately absorbed compounds (disodium EDTA and propylene glycol) was 1.8-3.3. Absorption via skin with "diaper rash" is specific to individual ingredients and exposure conditions, so a fixed uncertainty factor is not appropriate for safety assessment. The data support that the default 100% dermal absorption commonly used in first-tier risk assessments for diapered skin is conservative. This diaper rash skin model provides a practical tool of estimating absorption of various ingredients in baby products intended for diapered skin.


Assuntos
Cosméticos , Dermatite das Fraldas , Absorção Cutânea , Pele , Humanos , Cosméticos/toxicidade , Pele/metabolismo , Pele/efeitos dos fármacos , Lactente , Técnicas In Vitro , Fraldas Infantis , Modelos Biológicos
2.
Int J Cosmet Sci ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924095

RESUMO

OBJECTIVE: Human skin is the first line of defence from environmental factors such as solar radiation and is susceptible to premature ageing, including a disruption in epidermal differentiation and homeostasis. We evaluated the impact of a Galactomyces Ferment Filtrate (GFF) on epidermal differentiation and response to oxidative stress. METHODS: We used transcriptomics, both spatial and traditional, to assess the impact of GFF on epidermal biology and homeostasis in keratinocytes (primary or immortalized) and in ex vivo skin explant tissue. The effect of GFF on cell adhesion rates, cellular ATP levels and proliferation rates were quantitated. Oxidative phosphorylation and glycolytic rates were measured under normal and stress-induced conditions. RESULTS: Transcriptomics from keratinocytes and ex vivo skin explants from multiple donors show GFF induces keratinocyte differentiation, skin barrier development and cell adhesion while simultaneously repressing cellular stress and inflammatory related processes. Spatial transcriptomics profiling of ex vivo skin indicated basal keratinocytes at the epidermal-dermal junction and cornifying keratinocytes in the top layer of the epidermis as the primary cell types influenced by GFF treatment. Additionally, GFF significantly increases crosstalk between suprabasal and basal keratinocytes. To support these findings, we show that GFF can significantly increase cell adhesion and proliferation in keratinocytes. GFF also protected overall cellular bioenergetics under metabolic or oxidative stress conditions. CONCLUSION: Our findings provide novel insights into cellular differences and epidermal spatial localization in response to GFF, supporting previous findings that this filtrate has a significant impact on epidermal biology and homeostasis, particularly on spatially defined crosstalk. We propose that GFF can help maintain epidermal health by enhancing keratinocyte crosstalk and differentiation/proliferation balance as well as promoting an enhanced response to stress.

3.
J Cosmet Dermatol ; 23(3): 1029-1035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919888

RESUMO

BACKGROUND: Stratum corneum (SC) plays a critical role in skin barrier function for protection and defense in nature. The acidic skin pH, which is also known as the acid mantle, is very important in fighting against outer environmental threats, especially, bacteria. Furthermore, recent research has shown that the transient bacteria could potentially penetrate into deeper layer of the SC down to a few micrometers while posing an additional threat to the deeper layers of the skin. AIM: To develop a sequential tape stripping method for assessing the impact of personal cleansing product on the SC surface layers' acid mantle properties and antimicrobial defense against transient bacteria. METHODS: Fifty-five subjects were recruited. High pH soap-based Product 1 and low pH synthetic surfactant-based Product 2 were applied on the left and right forearms of each subject. Sequential tape stripping was performed on the same spots to access multiple layers of the skin SC. Both antimicrobial defense property and skin pH of different skin layers were evaluated at baseline and 12 h after treatment. RESULTS: The skin's antimicrobial defense was significantly higher 12 h after treatment of the low pH Product 2 as compared to the treatment of high pH Product 1. In fact, this trend was consistent across all three skin layers (Layer 1 to Layer 3) as measured in this study (p < 0.01). Furthermore, the skin surface pH of Layer 1 and Layer 3 were also lower 12 h after the treatment of low pH Product 2 as compared to that of the high pH Product 1 (p < 0.01). CONCLUSION: The results of this investigation demonstrated the benefits of 12-h long lasting and deeper protection of SC acid mantle properties and antimicrobial defense using a low pH skin cleansing product as compared to a high pH product.


Assuntos
Anti-Infecciosos , Epiderme , Humanos , Pele
4.
J Cosmet Sci ; 70(5): 247-257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596229

RESUMO

Petrolatum is a mixture of hydrocarbons that is widely used as a moisturizer. It is incorporated in bodywash formulations to help hydrate and maintain healthy skin appearance. The aim of this study was to investigate skin deposition and penetration of petrolatum from an experimental bodywash system consisting of petrolatum in vitro. Experiments were performed using cadaver split-thickness skin and Franz diffusion cells. Radiolabeled 14C-dotriacontane (C32-alkane) was used as a model permeant for petrolatum. The bodywash was applied on the skin and subsequently rinsed. At predetermined time points, the skin was wiped to remove the residual material on the surface, and tape-stripping was performed. Petrolatum was observed to deposit from the bodywash when applied on split-thickness skin with simulated rinsing. Petrolatum then penetrated into the stratum corneum and was detected at the depth of 12 tape-stripping and in the epidermis. The bodywash formulation could provide significant deposition and penetration of petrolatum into the stratum corneum at 1-72 hours postapplication.


Assuntos
Epiderme , Vaselina , Células Epidérmicas , Absorção Cutânea
5.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 12): 1435-45, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17139078

RESUMO

Protein tyrosine phosphatases (PTPs) play roles in many biological processes and are considered to be important targets for drug discovery. As inhibitor development has proven challenging, crystal structure-based design will be very helpful to advance inhibitor potency and selectivity. Successful application of protein crystallography to drug discovery heavily relies on high-quality crystal structures of the protein of interest complexed with pharmaceutically interesting ligands. It is very important to be able to produce protein-ligand crystals rapidly and reproducibly for as many ligands as necessary. This study details our efforts to engineer the catalytic domain of human protein tyrosine phosphatase beta (HPTPbeta-CD) with properties suitable for rapid-turnaround crystallography. Structures of apo HPTPbeta-CD and its complexes with several novel small-molecule inhibitors are presented here for the first time.


Assuntos
Domínio Catalítico , Desenho de Fármacos , Engenharia de Proteínas , Proteínas Tirosina Fosfatases/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA