Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 152: 109936, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34715526

RESUMO

D-arabitol, a five-carbon sugar alcohol, is widely used in food and pharmacy industry as a lower calorie sweetener or intermediate. Appropriate osmotic pressure was confirmed to facilitate polyol production by an osmophilic yeast strain of Yarrowia lipolytica with glycerol. In this study, an osmotic pressure control fed-batch fermentation strategy was used for high D-arabitol producing by Y. lipolytica ARA9 with crude glycerol. Glycerol was added to the broth quantitatively not only as a substrate but also as an osmotic agent. Meanwhile, NH3·H2O was fed as a nitrogen source and pH regulator. The maximum D-arabitol production reached 118.5 g/L at 108 h with the yield of 0.49 g/g and productivity of 1.10 g/L/h, respectively. Furthermore, a comparative proteomic analysis was used to study the cellular responses under excess and deficient nitrogen sources. Thirty-one differentially expressed protein spots belonging to seven different biological processes were identified. Excess nitrogen source enhanced gluconeogenesis and pentose phosphate pathways, both of which were involved in arabitol synthesis. In addition, cell growth was facilitated by increased expression of nucleotide and structural proteins. Enhanced energy and NADPH biosynthesis were employed to create a reductive environment and quell reactive oxygen species, improving D-arabitol production. Nitrogen deficiency resulted in cell rescue and stress response mechanisms such as reactive oxygen species elimination and heat shock protein response. The identified differentially expressed proteins provide information to reveal the mechanisms of the cellular responses under nitrogen source perturbation, and also provide guidance to improve D-arabitol production in metabolic engineering or process optimization methodologies.


Assuntos
Yarrowia , Fermentação , Glicerol , Nitrogênio , Pressão Osmótica , Proteômica , Álcoois Açúcares
2.
Polymers (Basel) ; 11(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30960560

RESUMO

Polyhedral oligomeric silsesquioxane (POSS)-derived Si@C anode material is prepared by the copolymerization of octavinyl-polyhedral oligomeric silsesquioxane (octavinyl-POSS) and styrene. Octavinyl-polyhedral oligomeric silsesquioxane has an inorganic core (-Si8O12) and an organic vinyl shell. Carbonization of the core-shell structured organic-inorganic hybrid precursor results in the formation of carbon protected Si-based anode material applicable for lithium ion battery. The initial discharge capacity of the battery based on the as-obtained Si@C material Si reaches 1500 mAh g-1. After 550 charge-discharge cycles, a high capacity of 1430 mAh g-1 was maintained. A combined XRD, XPS and TEM analysis was performed to investigate the variation of the discharge performance during the cycling experiments. The results show that the decrease in discharge capacity in the first few cycles is related to the formation of solid electrolyte interphase (SEI). The subsequent rise in the capacity can be ascribed to the gradual morphology evolution of the anode material and the loss of capacity after long-term cycles is due to the structural pulverization of silicon within the electrode. Our results not only show the high potential of the novel electrode material but also provide insight into the dynamic features of the material during battery cycling, which is useful for the future design of high-performance electrode material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA