Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554859

RESUMO

WO3 nanorods and xWO3@TiO2 (WO3/TiO2 mass ratio (x) = 1-5) photocatalysts were synthesized using the hydrothermal and sol-gel methods, respectively. The photocatalytic activities of xWO3@TiO2 for NH3 oxidation first increased and then decreased with a rise in TiO2 content. Among them, the heterostructured 3WO3@TiO2 photocatalyst showed the highest NH3 conversion (58 %) under the simulated sunlight irradiation, which was about two times higher than those of WO3 and TiO2. Furthermore, the smallest amounts of by-products (i.e., NO and NO2) were produced over 3WO3@TiO2. The enhancement in photocatalytic performance (i.e., NH3 conversion and N2 selectivity) of 3WO3@TiO2 was mainly attributed to the formed interfacial electric field between WO3 and TiO2, which promoted efficient separation and transfer of photogenerated charge carriers. Based on the results of reactive species trapping and active radical detection, photocatalytic oxidation of NH3 over 3WO3@TiO2 was governed by the photogenerated holes and superoxide radicals. This work combines two strategies of morphological regulation and interfacial electric field construction to simultaneously improve light utilization and photogenerated charge separation efficiency, which promotes the development of full-spectrum photocatalysts for the removal of ammonia.


Assuntos
Amônia , Titânio , Titânio/química , Oxirredução , Luz Solar
2.
J Environ Sci (China) ; 138: 395-405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135405

RESUMO

The removal of ammonia (NH3) emitted from agricultural and industrial activities is of great significance to protect human health and ecological environment. Photocatalytic NH3 oxidation to N2 under mild conditions is a promising strategy. However, developing visible light photocatalysts for NH3 oxidation is still in its infancy. Here, we fabricate N-TiO2 and Ag/AgCl/N-TiO2 photocatalysts by sol-gel and photodeposition methods, respectively. The introduction of N not only endows TiO2 with visible light response (absorption edge at 460 nm) but also results in the formation of heterophase junction (anatase and rutile). Thus, N-TiO2 shows 2.0 and 1.8 times higher than those over anatase TiO2 and commercial TiO2 for NH3 oxidation under full spectrum irradiation. Meanwhile, surface modification of Ag can simultaneously enhance visible light absorption (generating localized surface plasmon resonance effect) and charge separation efficiency. Therefore, the photocatalytic activity of Ag/AgCl/N-TiO2 is further improved. Furthermore, the presence of N and Ag also enhances the selectivity of N2 product owing to the change of reaction pathway. This work simultaneously regulates photocatalytic conversion efficiency and product selectivity, providing some guidance for developing highly efficient photocatalysts for NH3 elimination.


Assuntos
Amônia , Nitrogênio , Humanos , Catálise , Titânio
3.
Biodegradation ; 27(1): 47-57, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26714962

RESUMO

Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.


Assuntos
Processos Autotróficos , Bactérias/genética , Bactérias/metabolismo , Hidrogênio/metabolismo , Percloratos/metabolismo , Biodegradação Ambiental , Biodiversidade , Água Potável , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Cinética , Modelos Estatísticos , Oxirredução , Esgotos , Thauera/genética , Thauera/metabolismo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA