Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1509-1516, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37694412

RESUMO

To understand carbon sequestration capacity of grasslands, the changes of CO2 flux in Xilinhot grasslands and the influence of environmental factors were analyzed by using the eddy data of Xilinhot National Climate Observatory in 2018-2021, and the distribution of flux source areas was analyzed. The results showed that the southwest wind prevailed in the study area throughout the year, the source area in the growing season was larger than that in the non-growing season, and the source area under stable atmospheric conditions was larger than that under unstable conditions. The maximum length of source region with a contribution rate of 90% was close to 400 m, which was consistent with the length estimated by the classical law. The net ecosystem exchange (NEE) of Xilinhot grasslands had obvious diurnal and seasonal dynamics, which was manifested as a carbon sink in the daytime and a carbon source at night during the growing season and weak carbon source in the non-growing season. From 2018 to 2021, the annual total NEE were -15.59, -46.28, -41.94, and -78.14 g C·m-2·a-1, respectively, with an average value of -45.49 g C·m-2·a-1, indicating that Xilinhot grassland had strong carbon sequestration capacity. Vapor pressure deficit and photosynthetically active radiation helped grasslands absorb atmospheric CO2. At night, when temperature was above 0 ℃, the increases in air and soil temperature promoted vegetation respiration to release CO2.


Assuntos
Dióxido de Carbono , Ecossistema , Pradaria , China , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA