Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35565323

RESUMO

Telomeres are DNA-protein complexes that protect eukaryotic chromosome ends from being erroneously repaired by the DNA damage repair system, and the length of telomeres indicates the replicative potential of the cell. Telomeres shorten during each division of the cell, resulting in telomeric damage and replicative senescence. Tumor cells tend to ensure cell proliferation potential and genomic stability by activating telomere maintenance mechanisms (TMMs) for telomere lengthening. The alternative lengthening of telomeres (ALT) pathway is the most frequently activated TMM in tumors of mesenchymal and neuroepithelial origin, and ALT also frequently occurs during experimental cellular immortalization of mesenchymal cells. ALT is a process that relies on homologous recombination (HR) to elongate telomeres. However, some processes in the ALT mechanism remain poorly understood. Here, we review the most recent understanding of ALT mechanisms and processes, which may help us to better understand how the ALT pathway is activated in cancer cells and determine the potential therapeutic targets in ALT pathway-stabilized tumors.

2.
Genes (Basel) ; 13(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35205225

RESUMO

Fanconi anaemia (FA)-related proteins function in interstrand crosslink (ICL) repair pathways and multiple damage repair pathways. Recent studies have found that FA proteins are involved in the regulation of replication stress (RS) in alternative lengthening of telomeres (ALT). Since ALT cells often exhibit high-frequency ATRX mutations and high levels of telomeric secondary structure, high levels of DNA damage and replicative stress exist in ALT cells. Persistent replication stress is required to maintain the activity of ALT mechanistically, while excessive replication stress causes ALT cell death. FA proteins such as FANCD2 and FANCM are involved in the regulation of this balance by resolving or inhibiting the formation of telomere secondary structures to stabilize stalled replication forks and promote break-induced repair (BIR) to maintain the survival of ALT tumour cells. Therefore, we review the role of FA proteins in replication stress in ALT cells, providing a rationale and direction for the targeted treatment of ALT tumours.


Assuntos
Homeostase do Telômero , Telômero , Reparo do DNA/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA