Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Cogn Neurodyn ; 18(3): 1033-1045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826670

RESUMO

Although our knowledge of autism spectrum disorder (ASD) has been deepened, the accurate diagnosis of ASD from normal individuals is still left behind. In this study, we proposed to apply the spatial pattern of the network topology (SPN) to identify children with ASD from normal ones. Based on two independent batches of electroencephalogram datasets collected separately, the accurate recognition of ASD from normal children was achieved by applying the proposed SPN features. Since decreased long-range connectivity was identified for children with ASD, the SPN features extracted from the distinctive topological architecture between two groups in the first dataset were used to validate the capacity of SPN in classifying ASD, and the SPN features achieved the highest accuracy of 92.31%, which outperformed the other features e.g., power spectrum density (84.62%), network properties (76.92%), and sample entropy (73.08%). Moreover, within the second dataset, by using the model trained in the first dataset, the SPN also acquired the highest sensitivity in recognizing ASD, when compared to the other features. These results consistently illustrated that the functional brain network, especially the intrinsic spatial network topology, might be the potential biomarker for the diagnosis of ASD.

2.
Med Biol Eng Comput ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834855

RESUMO

Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH "noisy" brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton's depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton's anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38837920

RESUMO

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38837930

RESUMO

Motor imagery (MI) is a high-level cognitive process that has been widely applied to clinical rehabilitation and brain-computer interfaces (BCIs). However, the decoding of MI tasks still faces challenges, and the neural mechanisms underlying its application are unclear, which seriously hinders the development of MI-based clinical applications and BCIs. Here, we combined EEG source reconstruction and Bayesian nonnegative matrix factorization (NMF) methods to construct large-scale cortical networks of left-hand and right-hand MI tasks. Compared to right-hand MI, the results showed that the significantly increased functional network connectivities (FNCs) mainly located among the visual network (VN), sensorimotor network (SMN), right temporal network, right central executive network, and right parietal network in the left-hand MI at the ß (13-30Hz) and all (8-30Hz) frequency bands. For the network properties analysis, we found that the clustering coefficient, global efficiency, and local efficiency were significantly increased and characteristic path length was significantly decreased in left-hand MI compared to right-hand MI at the ß and all frequency bands. These network pattern differences indicated that the left-hand MI may need more modulation of multiple large-scale networks (i.e., VN and SMN) mainly located in the right hemisphere. Finally, based on the spatial pattern network of FNC and network properties, we propose a classification model. The proposed model achieves a top classification accuracy of 78.2% in cross-subject two-class MI-BCI tasks. Overall, our findings provide new insights into the neural mechanisms of MI and a potential network biomarker to identify MI-BCI tasks.

5.
Brain Res Bull ; 213: 110984, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38806119

RESUMO

This study introduces the Divergent Selective Focused Multi-heads Self-Attention Network (DSFMANet), an innovative deep learning model devised to automatically predict Hamilton Depression Rating Scale-17 (HAMD-17) scores in patients with depression. This model introduces a multi-branch structure for sub-bands and artificially configures attention focus factors on various branches, resulting in distinct attention distributions for different sub-bands. Experimental results demonstrate that when DSFMANet processes sub-band data, its performance surpasses current benchmarks in key metrics such as mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). This success is particularly evident in terms of MSE and MAE, where the performance of sub-band data is significantly superior, highlighting the model's potential in accurately predicting HAMD-17 scores. Concurrently, the experiment also compared the model's performance with sub-band and full-band data, affirming the superiority of the selective focus attention mechanism in electroencephalography (EEG) signal processing. DSFMANet, when utilizing sub-band data, exhibits higher data processing efficiency and reduced model complexity. The findings of this study underscore the significance of employing deep learning models based on sub-band analysis in depression diagnosis. The DSFMANet model not only effectively enhances the accuracy of depression diagnosis but also offers valuable research directions for similar applications in the future. This deep learning-based automated approach can effectively ascertain the HAMD-17 scores of patients with depression, thus offering more accurate and reliable support for clinical decision-making.

6.
Int J Neural Syst ; 34(4): 2450018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372035

RESUMO

Cognitive flexibility refers to the capacity to shift between patterns of mental function and relies on functional activity supported by anatomical structures. However, how the brain's structural-functional covarying is preconfigured in the resting state to facilitate cognitive flexibility under tasks remains unrevealed. Herein, we investigated the potential relationship between individual cognitive flexibility performance during the trail-making test (TMT) and structural-functional covariation of the large-scale multimodal covariance network (MCN) using magnetic resonance imaging (MRI) and electroencephalograph (EEG) datasets of 182 healthy participants. Results show that cognitive flexibility correlated significantly with the intra-subnetwork covariation of the visual network (VN) and somatomotor network (SMN) of MCN. Meanwhile, inter-subnetwork interactions across SMN and VN/default mode network/frontoparietal network (FPN), as well as across VN and ventral attention network (VAN)/dorsal attention network (DAN) were also found to be closely related to individual cognitive flexibility. After using resting-state MCN connectivity as representative features to train a multi-layer perceptron prediction model, we achieved a reliable prediction of individual cognitive flexibility performance. Collectively, this work offers new perspectives on the structural-functional coordination of cognitive flexibility and also provides neurobiological markers to predict individual cognitive flexibility.


Assuntos
Função Executiva , Imageamento por Ressonância Magnética , Humanos , Eletroencefalografia , Vias Neurais/diagnóstico por imagem , Cognição , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
7.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38342685

RESUMO

Perinatal depression, with a prevalence of 10 to 20% in United States, is usually missed as multiple symptoms of perinatal depression are common in pregnant women. Worse, the diagnosis of perinatal depression still largely relies on questionnaires, leaving the objective biomarker being unveiled yet. This study suggested a safe and non-invasive technique to diagnose perinatal depression and further explore its underlying mechanism. Considering the non-invasiveness and clinical convenience of electroencephalogram for mothers-to-be and fetuses, we collected the resting-state electroencephalogram of pregnant women at the 38th week of gestation. Subsequently, the difference in network topology between perinatal depression patients and healthy mothers-to-be was explored, with related spatial patterns being adopted to achieve the classification of pregnant women with perinatal depression from those healthy ones. We found that the perinatal depression patients had decreased brain network connectivity, which indexed impaired efficiency of information processing. By adopting the spatial patterns, the perinatal depression could be accurately recognized with an accuracy of 87.88%; meanwhile, the depression severity at the individual level was effectively predicted, as well. These findings consistently illustrated that the resting-state electroencephalogram network could be a reliable tool for investigating the depression state across pregnant women, and will further facilitate the clinical diagnosis of perinatal depression.


Assuntos
Depressão , Transtorno Depressivo , Feminino , Gravidez , Humanos , Depressão/diagnóstico , Couro Cabeludo , Gestantes , Eletroencefalografia
8.
Brain Res Bull ; 207: 110881, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232779

RESUMO

Continuous electroencephalogram (cEEG) plays a crucial role in monitoring and postoperative evaluation of critical patients with extensive EEG abnormalities. Recently, the temporal variability of dynamic resting-state functional connectivity has emerged as a novel approach to understanding the pathophysiological mechanisms underlying diseases. However, little is known about the underlying temporal variability of functional connections in critical patients admitted to neurology intensive care unit (NICU). Furthermore, considering the emerging field of network physiology that emphasizes the integrated nature of human organisms, we hypothesize that this temporal variability in brain activity may be potentially linked to other physiological functions. Therefore, this study aimed to investigate network variability using fuzzy entropy in 24-hour dynamic resting-state networks of critical patients in NICU, with an emphasis on exploring spatial topology changes over time. Our findings revealed both atypical flexible and robust architectures in critical patients. Specifically, the former exhibited denser functional connectivity across the left frontal and left parietal lobes, while the latter showed predominantly short-range connections within anterior regions. These patterns of network variability deviating from normality may underlie the altered network integrity leading to loss of consciousness and cognitive impairment observed in these patients. Additionally, we explored changes in 24-hour network properties and found simultaneous decreases in brain efficiency, heart rate, and blood pressure between approximately 1 pm and 5 pm. Moreover, we observed a close relationship between temporal variability of resting-state network properties and other physiological indicators including heart rate as well as liver and kidney function. These findings suggest that the application of a temporal variability-based cEEG analysis method offers valuable insights into underlying pathophysiological mechanisms of critical patients in NICU, and may present novel avenues for their condition monitoring, intervention, and treatment.


Assuntos
Imageamento por Ressonância Magnética , Neurologia , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos
9.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950878

RESUMO

In this study, based on scalp electroencephalogram (EEG), we conducted cortical source localization and functional network analyses to investigate the underlying mechanism explaining the decision processes when individuals anticipate maximizing gambling benefits, particularly in situations where the decision outcomes are inconsistent with the profit goals. The findings shed light on the feedback monitoring process, wherein incongruity between outcomes and gambling goals triggers a more pronounced medial frontal negativity and activates the frontal lobe. Moreover, long-range theta connectivity is implicated in processing surprise and uncertainty caused by inconsistent feedback conditions, while middle-range delta coupling reflects a more intricate evaluation of feedback outcomes, which subsequently modifies individual decision-making for optimizing future rewards. Collectively, these findings deepen our comprehension of decision-making under circumstances where the profit goals are compromised by decision outcomes and provide electrophysiological evidence supporting adaptive adjustments in individual decision strategies to achieve maximum benefit.


Assuntos
Jogo de Azar , Humanos , Retroalimentação , Tomada de Decisões/fisiologia , Eletroencefalografia , Lobo Frontal/fisiologia , Encéfalo
10.
J Neurosci Methods ; 402: 110015, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38000636

RESUMO

Spectral regression (SR), a graph-based learning regression model, can be used to extract features from graphs to realize efficient dimensionality reduction. However, due to the SR method remains a regularized least squares problem and being defined in L2-norm space, the effect of artifacts in EEG signals cannot be efficiently resisted. In this work, to further improve the robustness of the graph-based regression models, we propose to utilize the prior distribution estimation in the Bayesian framework and develop a robust hierarchical Bayesian spectral regression framework (named HB-SR), which is designed with the hierarchical Bayesian ensemble strategies. In the proposed HB-SR, the impact of noises can be effectively reduced by the adaptive adjustment approach in model parameters with the data-driven manner. Specifically, in the current work, three different distributions have been elaborately designed to enhance the universality of the proposed HB-SR, i.e., Gaussian distribution, Laplace distribution, and Student-t distribution. To objectively evaluate the performance of the HB-SR framework, we conducted both simulation studies and emotion recognition experiments based on emotional EEG signals. Experimental results have consistently indicated that compared with other existing spectral regression methods, the proposed HB-SR can effectively suppress the influence of noises and achieve robust EEG emotion recognition.


Assuntos
Eletroencefalografia , Emoções , Humanos , Teorema de Bayes , Eletroencefalografia/métodos , Simulação por Computador , Aprendizagem
11.
Small ; 20(9): e2305798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849041

RESUMO

As the most popular liquid metal (LM), gallium (Ga) and its alloys are emerging as functional materials due to their unique combination of fluidic and metallic properties near room temperature. As an important branch of utilizing LMs, micro- and submicron-particles of Ga-based LM are widely employed in wearable electronics, catalysis, energy, and biomedicine. Meanwhile, the phase transition is crucial not only for the applications based on this reversible transformation process, but also for the solidification temperature at which fluid properties are lost. While Ga has several solid phases and exhibits unusual size-dependent phase behavior. This complex process makes the phase transition and undercooling of Ga uncontrollable, which considerably affects the application performance. In this work, extensive (nano-)calorimetry experiments are performed to investigate the polymorph selection mechanism during liquid Ga crystallization. It is surprisingly found that the crystallization temperature and crystallization pathway to either α -Ga or ß -Ga can be effectively engineered by thermal treatment and droplet size. The polymorph selection process is suggested to be highly relevant to the capability of forming covalent bonds in the equilibrium supercooled liquid. The observation of two different crystallization pathways depending on the annealing temperature may indicate that there exist two different liquid phases in Ga.

12.
Brain Res Bull ; 206: 110826, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040298

RESUMO

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder and early diagnosis is crucial for effective treatment. Stable and effective biomarkers are essential for understanding the underlying causes of the disorder and improving diagnostic accuracy. Electroencephalography (EEG) signals have proven to be reliable biomarkers for diagnosing ASD. Extracting stable connectivity patterns from EEG signals helps ensure robustness in ASD diagnostic systems. In this study, we propose a hybrid graph convolutional network framework called Rest-HGCN, which utilizes resting-state EEG signals to capture differential patterns of brain connectivity between normal children and ASD patients using graph learning strategies. The Rest-HGCN combines brain network analysis techniques and data-driven strategies to extract discriminative graph features from resting-state EEG signals. By automatically extracting differential graph patterns from these signals, the Rest-HGCN achieves reliable ASD diagnosis. To evaluate the performance of Rest-HGCN, we conducted ASD diagnosis experiments using k-fold cross-validation on the public ABC-CT resting EEG dataset. The proposed Rest-HGCN model achieved accuracies of 87.12 % and 85.32 % in single-subject and cross-experiment analyses, respectively. The results suggest that Rest-HGCN can effectively capture discriminant graph patterns from resting EEG signals and achieve robust ASD diagnosis. This may provide an effective and convenient tool for clinical ASD diagnosis.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/diagnóstico , Eletroencefalografia/métodos , Encéfalo , Mapeamento Encefálico , Biomarcadores
13.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38061696

RESUMO

Working memory, which is foundational to higher cognitive function, is the "sketchpad of volitional control." Successful working memory is the inevitable outcome of the individual's active control and manipulation of thoughts and turning them into internal goals during which the causal brain processes information in real time. However, little is known about the dynamic causality among distributed brain regions behind thought control that underpins successful working memory. In our present study, given that correct responses and incorrect ones did not differ in either contralateral delay activity or alpha suppression, further rooting on the high-temporal-resolution EEG time-varying directed network analysis, we revealed that successful working memory depended on both much stronger top-down connections from the frontal to the temporal lobe and bottom-up linkages from the occipital to the temporal lobe, during the early maintenance period, as well as top-down flows from the frontal lobe to the central areas as the delay behavior approached. Additionally, the correlation between behavioral performance and casual interactions increased over time, especially as memory-guided delayed behavior approached. Notably, when using the network metrics as features, time-resolved multiple linear regression of overall behavioral accuracy was exactly achieved as delayed behavior approached. These results indicate that accurate memory depends on dynamic switching of causal network connections and shifting to more task-related patterns during which the appropriate intervention may help enhance memory.


Assuntos
Encéfalo , Memória de Curto Prazo , Memória de Curto Prazo/fisiologia , Encéfalo/fisiologia , Lobo Temporal/fisiologia , Lobo Frontal/fisiologia , Mapeamento Encefálico
14.
Adv Sci (Weinh) ; : e2304525, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037314

RESUMO

Flexible electronic devices extended abilities of humans to perceive their environment conveniently and comfortably. Among them, flexible magnetic field sensors are crucial to detect changes in the external magnetic field. State-of-the-art flexible magnetoelectronics do not exhibit low detection limit and large working range simultaneously, which limits their application potential. Herein, a flexible magnetic field sensor possessing a low detection limit of 22 nT and wide sensing range from 22 nT up to 400 mT is reported. With the detection range of seven orders of magnitude in magnetic field sensor constitutes at least one order of magnitude improvement over current flexible magnetic field sensor technologies. The sensor is designed as a cantilever beam structure accommodating a flexible permanent magnetic composite and an amorphous magnetic wire enabling sensitivity to low magnetic fields. To detect high fields, the anisotropy of the giant magnetoimpedance effect of amorphous magnetic wires to the magnetic field direction is explored. Benefiting from mechanical flexibility of sensor and its broad detection range, its application potential for smart wearables targeting geomagnetic navigation, touchless interactivity, rehabilitation appliances, and safety interfaces providing warnings of exposure to high magnetic fields are explored.

15.
Brain Res Bull ; 205: 110812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951276

RESUMO

Acoustic stimulation is one of the most influential techniques for distressing tinnitus, while how it functions to reverse neural changes associated with tinnitus remains undisclosed. In this study, our objective is to investigate alterations in brain networks to shed light on the enigma of acoustic intervention for tinnitus. We designed a 75-day long-term acoustic intervention experiment, during which chronic tinnitus patients received daily modulated acoustic stimulation with each session lasting 15 days. Every 15 days, professional tinnitus assessments were conducted, collecting both electroencephalogram (EEG) and tinnitus handicap inventory (THI) data from the patients. Thereafter, we investigated the changes in EEG network organizations during continuous acoustic stimulation and their progressive evolution throughout long-term therapy, alongside exploring the associations between the evolving changes of the network alterations and THI. Our current study findings reveal reorganization in alpha/beta long-range frontal-parietal-occipital connections as well as local frontal and parietal-occipital regions induced by acoustic stimulation. Furthermore, we observed a decrease in modulation effects as therapy sessions progressed. These alterations in brain networks reflect the reversal of tinnitus-related neural activities, particularly distress and perception; thus contributing to tinnitus rehabilitation through long-term modulation effects. This study provides unique insights into how long-term acoustic intervention affects the network organizations of tinnitus patients and deepens our understanding of the pathophysiological mechanisms underlying tinnitus rehabilitation.


Assuntos
Zumbido , Humanos , Estimulação Acústica/métodos , Zumbido/terapia , Eletroencefalografia , Lobo Parietal
16.
Artigo em Inglês | MEDLINE | ID: mdl-37922187

RESUMO

Frontotemporal dementia (FTD) is frequently misdiagnosed as Alzheimer's disease (AD) due to similar clinical symptoms. In this study, we constructed frequency-based multilayer resting-state electroencephalogram (EEG) networks and extracted representative network features to improve the differentiation between AD and FTD. When compared with healthy controls (HC), AD showed primarily stronger delta-alpha cross-couplings and weaker theta-sigma cross-couplings. Notably, when comparing the AD and FTD groups, we found that the AD exhibited stronger delta-alpha and delta-beta connectivity than the FTD. Thereafter, by extracting the representative network features and then applying these features in the classification between AD and FTD, an accuracy of 81.1% was achieved. Finally, a multivariable linear regressive model was built, based on the differential topologies, and then adopted to predict the scores of the Mini-Mental State Examination (MMSE) scale. Accordingly, the predicted and actual measured scores were indeed significantly correlated with each other ( r = 0.274, p = 0.036). These findings consistently suggest that frequency-based multilayer resting-state networks can be utilized for classifying AD and FTD and have potential applications for clinical diagnosis.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Doença de Alzheimer/diagnóstico , Demência Frontotemporal/diagnóstico , Eletroencefalografia , Testes de Estado Mental e Demência
17.
J Neural Eng ; 20(5)2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659391

RESUMO

Objective. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer's decision-making is a crucial issue. Yet the neural substrate of the proposer's decision behavior, especially from the resting-state network perspective, remains unclear.Approach. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers' unfair offer rates in the ultimatum game.Main results.The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.Significance. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well.


Assuntos
Inteligência Artificial , Tomada de Decisões
18.
Cereb Cortex ; 33(22): 11170-11180, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37750334

RESUMO

Although the electrophysiological event-related potential in face processing (e.g. N170) is widely accepted as a face-sensitivity biomarker that is deficient in children with autism spectrum disorders, the time-varying brain networks during face recognition are still awaiting further investigation. To explore the social deficits in autism spectrum disorder, especially the time-varying brain networks during face recognition, the current study analyzed the N170, cortical activity, and time-varying networks under 3 tasks (face-upright, face-inverted, and house-upright) in autism spectrum disorder and typically developing children. The results revealed a smaller N170 amplitude in autism spectrum disorder compared with typically developing, along with decreased cortical activity mainly in occipitotemporal areas. Concerning the time-varying networks, the atypically stronger information flow and brain network connections across frontal, parietal, and temporal regions in autism spectrum disorder were reported, which reveals greater effort was exerted by autism spectrum disorder to obtain comparable performance to the typically developing children, although the amplitude of N170 was still smaller than that of the typically developing children. Different brain activation states and interaction patterns of brain regions during face processing were discovered between autism spectrum disorder and typically developing. These findings shed light on the face-processing mechanisms in children with autism spectrum disorder and provide new insight for understanding the social dysfunction of autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Reconhecimento Facial , Criança , Humanos , Reconhecimento Facial/fisiologia , Encéfalo , Potenciais Evocados/fisiologia , Eletroencefalografia
19.
Front Neurol ; 14: 1163772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545720

RESUMO

Objective: Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is autoimmune encephalitis with a characteristic neuropsychiatric syndrome and persistent cognition deficits even after clinical remission. The objective of this study was to uncover the potential noninvasive and quantified biomarkers related to residual brain distortions in convalescent anti-NMDARE patients. Methods: Based on resting-state electroencephalograms (EEG), both power spectral density (PSD) and brain network analysis were performed to disclose the persistent distortions of brain rhythms in these patients. Potential biomarkers were then established to distinguish convalescent patients from healthy controls. Results: Oppositely configured spatial patterns in PSD and network architecture within specific rhythms were identified, as the hyperactivated PSD spanning the middle and posterior regions obstructs the inter-regional information interactions in patients and thereby leads to attenuated frontoparietal and frontotemporal connectivity. Additionally, the EEG indexes within delta and theta rhythms were further clarified to be objective biomarkers that facilitated the noninvasive recognition of convalescent anti-NMDARE patients from healthy populations. Conclusion: Current findings contributed to understanding the persistent and residual pathological states in convalescent anti-NMDARE patients, as well as informing clinical decisions of prognosis evaluation.

20.
Brain Res Bull ; 202: 110744, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591404

RESUMO

Given a multitude of genetic and environmental factors, when investigating the variability in schizophrenia (SCZ) and the first-degree relatives (R-SCZ), latent disease-specific variation is usually hidden. To reliably investigate the mechanism underlying the brain deficits from the aspect of functional networks, we newly iterated a framework of contrastive variational autoencoders (cVAEs) applied in the contrasts among three groups, to disentangle the latent resting-state network patterns specified for the SCZ and R-SCZ. We demonstrated that the comparison in reconstructed resting-state networks among SCZ, R-SCZ, and healthy controls (HC) revealed network distortions of the inner-frontal hypoconnectivity and frontal-occipital hyperconnectivity, while the original ones illustrated no differences. And only the classification by adopting the reconstructed network metrics achieved satisfying performances, as the highest accuracy of 96.80% ± 2.87%, along with the precision of 95.05% ± 4.28%, recall of 98.18% ± 3.83%, and F1-score of 96.51% ± 2.83%, was obtained. These findings consistently verified the validity of the newly proposed framework for the contrasts among the three groups and provided related resting-state network evidence for illustrating the pathological mechanism underlying the brain deficits in SCZ, as well as facilitating the diagnosis of SCZ.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Imageamento por Ressonância Magnética/métodos , Encéfalo , Aprendizado de Máquina , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA