Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257064

RESUMO

As a π-conjugated conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is recognized as a promising environmentally friendly thermoelectric material. However, its low conductivity has limited applications in the thermoelectric field. Although thermoelectric efficiency can be significantly enhanced through post-treatment doping, these processes often involve environmentally harmful organic solvents or reagents. In this study, a novel and environmentally benign method using purified water (including room temperature water and subsequent warm water) to treat PEDOT:PSS film has been developed, resulting in improved thermoelectric performance. The morphology data, chemical composition, molecular structure, and thermoelectric performance of the films before and after treatment were characterized and analyzed using a scanning electron microscope (SEM), Raman spectrum, XRD pattern, X-ray photoelectron spectroscopy (XPS), and a thin film thermoelectric measurement system. The results demonstrate that the water treatment effectively removes nonconductive PSS from PEDOT:PSS composites, significantly enhancing their conductivity. Treated films exhibit improved thermoelectric properties, particularly those treated only 15 times with room temperature water, achieving a high electrical conductivity of 62.91 S/cm, a Seebeck coefficient of 14.53 µV K-1, and an optimal power factor of 1.3282 µW·m-1·K-2. In addition, the subsequent warm water treatment can further enhance the thermoelectric properties of the film sample. The underlying mechanism of these improvements is also discussed.

2.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631508

RESUMO

As a remarkable multifunctional material, ferroferric oxide (Fe3O4) exhibits considerable potential for applications in many fields, such as energy storage and conversion technologies. However, the poor electronic and ionic conductivities of classical Fe3O4 restricts its application. To address this challenge, Fe3O4 nanoparticles are combined with graphene oxide (GO) via a typical hydrothermal method, followed by a conductive wrapping using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic sulfonate) (PEDOT:PSS) for the fabrication of composite films. Upon acid treatment, a highly conductive porous Fe3O4@RGO/PEDOT:PSS hybrid is successfully constructed, and each component exerts its action that effectively facilitates the electron transfer and subsequent performance improvement. Specifically, the Fe3O4@RGO/PEDOT:PSS porous film achieves a high specific capacitance of 244.7 F g-1 at a current of 1 A g-1. Furthermore, due to the facial fabrication of the highly conductive networks, the free-standing film exhibits potential advantages in flexible thermoelectric (TE) materials. Notably, such a hybrid film shows a high electric conductivity (σ) of 507.56 S cm-1, a three times greater value than the Fe3O4@RGO component, and achieves an optimized Seebeck coefficient (S) of 13.29 µV K-1 at room temperature. This work provides a novel route for the synthesis of Fe3O4@RGO/PEDOT:PSS multifunctional films that possess promising applications in energy storage and conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA