Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392390

RESUMO

Few-shot learning aims to solve the difficulty in obtaining training samples, leading to high variance, high bias, and over-fitting. Recently, graph-based transductive few-shot learning approaches supplement the deficiency of label information via unlabeled data to make a joint prediction, which has become a new research hotspot. Therefore, in this paper, we propose a novel ensemble semi-supervised few-shot learning strategy via transductive network and Dempster-Shafer (D-S) evidence fusion, named ensemble transductive propagation networks (ETPN). First, we present homogeneity and heterogeneity ensemble transductive propagation networks to better use the unlabeled data, which introduce a preset weight coefficient and provide the process of iterative inferences during transductive propagation learning. Then, we combine the information entropy to improve the D-S evidence fusion method, which improves the stability of multi-model results fusion from the pre-processing of the evidence source. Third, we combine the L2 norm to improve an ensemble pruning approach to select individual learners with higher accuracy to participate in the integration of the few-shot model results. Moreover, interference sets are introduced to semi-supervised training to improve the anti-disturbance ability of the mode. Eventually, experiments indicate that the proposed approaches outperform the state-of-the-art few-shot model. The best accuracy of ETPN increases by 0.3% and 0.28% in the 5-way 5-shot, and by 3.43% and 7.6% in the 5-way 1-shot on miniImagNet and tieredImageNet, respectively.

2.
Entropy (Basel) ; 23(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34682055

RESUMO

This paper investigates the nested Monte Carlo tree search (NMCTS) for feature selection on regression tasks. NMCTS starts out with an empty subset and uses search results of lower nesting level simulation. Level 0 is based on random moves until the path reaches the leaf node. In order to accomplish feature selection on the regression task, the Gamma test is introduced to play the role of the reward function at the end of the simulation. The concept Vratio of the Gamma test is also combined with the original UCT-tuned1 and the design of stopping conditions in the selection and simulation phases. The proposed GNMCTS method was tested on seven numeric datasets and compared with six other feature selection methods. It shows better performance than the vanilla MCTS framework and maintains the relevant information in the original feature space. The experimental results demonstrate that GNMCTS is a robust and effective tool for feature selection. It can accomplish the task well in a reasonable computation budget.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA