Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Life Sci Technol ; 6(2): 315-330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827126

RESUMO

Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities, imposing pressures on marine species. To withstand recurring environmental challenges, marine organisms, especially benthic species lacking behavioral choices to select optimal habitats, have to utilize well-established strategies such as the antioxidant defense system (ADS) to ensure their survival. Therefore, understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges. Here we conducted a comparative analysis of the physiological and transcriptional responses based on the ADS during two rounds of 'hypersalinity-recovery' challenges in two model congeneric invasive ascidians, Ciona robusta and C. savignyi. Our results demonstrated that C. savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level, while C. robusta demonstrated heightened responses at the transcriptional level. We observed distinct transcriptional responses, particularly in the utilization of two superoxide dismutase (SOD) isoforms. Both Ciona species developed physiological stress memory with elevated total SOD (T-SOD) and glutathione (GSH) responses, while only C. robusta demonstrated transcriptional stress memory. The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species. These findings support the 'context-dependent stress memory hypothesis', emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges. Our results enhance our understanding of the mechanisms of environmental challenge management in marine species, particularly those related to the ADS. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00228-y.

2.
Pestic Biochem Physiol ; 202: 105969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879313

RESUMO

Populus pseudo-cathayana × Populus deltoides is a crucial artificial forest tree species in Northeast China. The presence of the fall webworm (Hyphantria cunea) poses a significant threat to these poplar trees, causing substantial economic and ecological damage. This study conducted an insect-feeding experiment with fall webworm on P. pseudo-cathayana × P. deltoides, examining poplar's physiological indicators, transcriptome, and metabolome under different lengths of feeding times. Results revealed significant differences in phenylalanine ammonia-lyase activity, total phenolic content, and flavonoids at different feeding durations. Transcriptomic analysis identified numerous differentially expressed genes, including AP2/ERF, MYB, and WRKY transcription factor families exhibiting the highest expression variations. Differential metabolite analysis highlighted flavonoids and phenolic acid compounds of poplar's leaves as the most abundant in our insect-feeding experiment. Enrichment analysis revealed significant enrichment in the plant hormone signal transduction and flavonoid biosynthetic pathways. The contents of jasmonic acid and jasmonoyl-L-isoleucine increased with prolonged fall webworm feeding. Furthermore, the accumulation of dihydrokaempferol, catechin, kaempferol, and naringenin in the flavonoid biosynthesis pathway varied significantly among different samples, suggesting their crucial role in response to pest infestation. These findings provide novel insights into how poplar responds to fall webworm infestation.


Assuntos
Populus , Populus/genética , Populus/metabolismo , Animais , Flavonoides/metabolismo , Besouros/fisiologia , Besouros/metabolismo , Oxilipinas/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética , Ciclopentanos/metabolismo , Folhas de Planta/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Mariposas/genética , Mariposas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo
3.
Angew Chem Int Ed Engl ; : e202404386, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720177

RESUMO

Based on the electron-withdrawing effect of the Pt(bpy)Cl2 molecule, a simple post-modification amide reaction was firstly used to graft it onto the surface of NH2-MIL-125, which formed a highly efficient electron acceptor that induced the conversion of the photoinduced charge migration pathway from internal BDC→TiOx migration to external BDC→PtNx migration, significantly improving the efficiency of photoinduced electron transfer and separation. Furthermore, precise control over the first coordination sphere of Pt single atoms was achieved using further post-modification with additional bipyridine to investigate the effect of Pt-Nx coordination numbers on reaction activity. The as-synthesized NML-PtN2 exhibited superior photocatalytic hydrogen evolution activity of 7.608 mmol g-1 h-1, a remarkable improvement of 225 and 2.26 times compared to pristine NH2-MIL-125 and NML-PtN4, respectively. In addition, the superior apparent quantum yield of 4.01% (390 nm) and turnover frequency of 190.3 h-1 (0.78 wt% Pt SA; 129 times compared to Pt nanoparticles/NML) revealed the high solar utilization efficiency and hydrogen evolution activity of the material. And macroscopic color changes caused by the transition of carrier migration paths was first observed. It holds profound significance for the design of MOF-Molecule catalysts with efficient charge carrier separation and precise regulation of single-atom coordination sphere.

4.
J Biotechnol ; 379: 87-97, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38103580

RESUMO

Lessertia frutescens is a perennial shrub of commercial importance in South Africa, but the scarcity of plant resources has limited current product production. In this study, to provide an alternative approach for obtaining L. frutescens material, adventitious roots (ARs) were induced from sterilized seedlings and cultured in a suspension culture system. During this process, selection tests were conducted to find a suitable auxin and its concentration for AR induction and a suitable basal medium for AR growth and metabolite accumulation; a kinetic study was then performed to constructure kinetic models. The results showed that compared to other auxins and concentrations, indole-3-butyric acid at 3 mg/L was suitable for increasing the number and length of ARs during AR induction. In AR suspension culture, Schenk and Hildebrandt (SH) was better than other basal media, and the maximum AR fresh (86.9 g/L) or dry weight (5.5 g/L), total triterpenoid saponin (92.6 mg/g DW), and polysaccharide (114.7 mg/g DW) contents were determined in the 1.5×SH medium. In addition, AR biomass and metabolite contents reached the maximum on day 42. The kinetic models for AR growth and triterpenoid and polysaccharide production were constructed, providing the basis for further optimization of culture conditions and large-scale culture.


Assuntos
Fabaceae , Saponinas , Raízes de Plantas , Polissacarídeos/metabolismo , Ácidos Indolacéticos/farmacologia , Biomassa , Saponinas/metabolismo
5.
Chemosphere ; 344: 140395, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820881

RESUMO

Photocatalysis is currently a hot research field, which provides promising processes to produce green energy sources and other useful products, thus eventually benefiting carbon emission reduction and leading to a low-carbon future. The development and application of stable and efficient photocatalytic materials is one of the main technical bottlenecks in the field of photocatalysis. Perovskite has excellent performance in the fields of photocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), organic synthesis and pollutant degradation due to its unique structure, flexibility and resulting excellent photoelectric and catalytic properties. The stability problems caused by perovskite's susceptibility to environmental influences hinder its further application in the field of photocatalysis. Therefore, this paper innovatively summarizes and analyzes the existing methods and strategies to improve the stability of perovskite in the field of photocatalysis. Specifically, (i) component engineering, (ii) morphological control, (iii) hybridization and encapsulation are thought to improve the stability of perovskites while improving photocatalytic efficiency. Finally, the challenges and prospects of perovskite photocatalysts are discussed, which provides constructive thinking for the potential application of perovskite photocatalysts.


Assuntos
Poluentes Ambientais , Iodo , Compostos de Cálcio , Catálise , Fontes Geradoras de Energia
6.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834365

RESUMO

Alternative splicing (AS), a pivotal biological process contributing to phenotypic plasticity, creates a bridge linking genotypes with phenotypes. Despite its importance, the AS mechanisms underlying environmental response and adaptation have not been well studied, and more importantly, the cis- and trans-acting factors influencing AS variation remain unclear. Using the model invasive congeneric ascidians, Ciona robusta, and Ciona savignyi, we compared their AS responses to environmental changes and explored the potential determinants. Our findings unveiled swift and dynamic AS changes in response to environmental challenges, and differentially alternative spliced genes (DASGs) were functionally enriched in transmembrane transport processes. Interestingly, both the prevalence and level of AS in C. robusta were lower than those observed in C. savignyi. Furthermore, these two indices were higher under temperature stresses compared to salinity stresses in C. savignyi. All the observed patterns underscore the species-specific and environmental context-dependent AS responses to environmental challenges. The dissimilarities in genomic structure and exon/intron size distributions between these two species likely contributed to the observed AS variation. Moreover, we identified a total of 11 and 9 serine/arginine-rich splicing factors (SRSFs) with conserved domains and gene structures in the genomes of C. robusta and C. savignyi, respectively. Intriguingly, our analysis revealed that all detected SRSFs did not exhibit prevalent AS regulations. Instead, we observed AS control over a set of genes related to splicing factors and spliceosome components. Altogether, our results elucidate species-specific and environmental challenge-dependent AS response patterns in closely related invasive ascidians. The identified splicing factors and spliceosome components under AS control offer promising candidates for further investigations into AS-mediated rapid responses to environmental challenges complementary to SRSFs.


Assuntos
Processamento Alternativo , Ciona intestinalis , Animais , Processamento Alternativo/genética , Transativadores/genética , Genoma , Ciona intestinalis/genética , Fatores de Processamento de RNA/genética
7.
Plants (Basel) ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896029

RESUMO

The auxin/indole-3-acetic acid (Aux/IAA) and auxin response factor (ARF) genes are two crucial gene families in the plant auxin signaling pathway. Nonetheless, there is limited knowledge regarding the Aux/IAA and ARF gene families in Populus simonii. In this study, we first identified 33 putative PsIAAs and 35 PsARFs in the Populus simonii genome. Analysis of chromosomal location showed that the PsIAAs and PsARFs were distributed unevenly across 17 chromosomes, with the greatest abundance observed on chromosomes 2. Furthermore, based on the homology of PsIAAs and PsARFs, two phylogenetic trees were constructed, classifying 33 PsIAAs and 35 PsARFs into three subgroups each. Five pairs of PsIAA genes were identified as the outcome of tandem duplication, but no tandem repeat gene pairs were found in the PsARF family. The expression profiling of PsIAAs and PsARFs revealed that several genes exhibited upregulation in different tissues and under various stress conditions, indicating their potential key roles in plant development and stress responses. The variance in expression patterns of specific PsIAAs and PsARFs was corroborated through RT-qPCR analysis. Most importantly, we instituted that the PsIAA7 gene, functioning as a central hub, exhibits interactions with numerous Aux/IAA and ARF proteins. Furthermore, subcellular localization findings indicate that PsIAA7 functions as a protein localized within the nucleus. To conclude, the in-depth analysis provided in this study will contribute significantly to advancing our knowledge of the roles played by PsIAA and PsARF families in both the development of P. simonii tissue and its responses to stress. The insights gained will serve as a valuable asset for further inquiries into the biological functions of these gene families.

8.
J Hazard Mater ; 460: 132363, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633017

RESUMO

As a rising branch of advanced oxidation processes, persulfate activation has attracted growing attention. Unlike catalysts that have been widely studied, the selection of persulfate is previously overlooked. In this study, the affecting factors of persulfates were studied. The effect of target pollutant properties on superior persulfate species (the species with a higher degradation efficiency) was investigated by multiwalled carbon nanotube (MWCNT)/persulfate catalytic systems. Innovatively, the EHOMO (or vertical ionization potential (VIP)) value of the target pollutant was proposed to be an index to judge the superior persulfate species, and the threshold is VIP= 6.397-6.674 eV, EHOMO= -8.035∼- 7.810 eV, respectively. To be specific, when the VIP of phenolic compounds is higher (or EHOMO of phenolic compounds is lower) than the threshold, the catalytic performance of peroxymonosulfate would be higher than that of peroxydisulfate. Moreover, the effects of coexisting cations on peroxydisulfate superior species were further investigated. It was illustrated that the hydrated cation radius of coexisting cations would influence the pollutant degradation efficiency under some circumstances. This study provides a new approach to improve the cost of persulfate activation systems and promotes the underlying downstream application of persulfate activation systems.

9.
Sci Total Environ ; 904: 166180, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562617

RESUMO

Due to the widespread commercial production and use of brominated flame retardants (BFRs) in China, their potential impact on human health development should not be underestimated. This review searched the literature on Polybrominated diphenyl ethers and Novel brominated flame retardant (PBDEs and NBFRs) (broad BFRs) in the aquatic environment (including surface water and sediment) in China over the last decade. It was found that PBDEs and NBFRs entered the aquatic environment through four main pathways, atmospheric deposition, surface runoff, sewage effluent and microplastic decomposition. The distribution of PBDEs and NBFRs in the aquatic environment was highly correlated with the local economic structure and population density. In addition, a preliminary risk assessment of existing PBDEs and PBDEs in sediments showed that areas with high-risk quotient values were always located in coastal areas with e-waste dismantling sites, which was mainly attributed to the historical legacy of electronic waste. This research provides help for the human health development and regional risk planning management posed by PBDEs and NBFRs.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , China , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Plásticos , Medição de Risco , Poluentes Químicos da Água/análise
10.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299154

RESUMO

Oplopanax elatus is an endangered medicinal plant, and adventitious root (AR) culture is an effective way to obtain its raw materials. Yeast extract (YE) is a lower-price elicitor and can efficiently promote metabolite synthesis. In this study, the bioreactor-cultured O. elatus ARs were treated with YE in a suspension culture system to investigate the elicitation effect of YE on flavonoid accumulation, serving for further industrial production. Among YE concentrations (25-250 mg/L), 100 mg/L YE was the most suitable for increasing the flavonoid accumulation. The ARs with various ages (35-, 40-, and 45-day-old) responded differently to YE stimulation, where the highest flavonoid accumulation was found when 35-day-old ARs were treated with 100 mg/L YE. After YE treatment, the flavonoid content increased, peaked at 4 days, and then decreased. By comparison, the flavonoid content and antioxidant activities in the YE group were obviously higher than those in the control. Subsequently, the flavonoids of ARs were extracted by flash extraction, where the optimized extraction process was: 63% ethanol, 69 s of extraction time, and a 57 mL/g liquid-material ratio. The findings provide a reference for the further industrial production of flavonoid-enriched O. elatus ARs, and the cultured ARs have potential application for the future production of products.

11.
Adv Mater ; 35(38): e2302419, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352331

RESUMO

The recently unfolded ferroionic phenomena in 2D van der Waals (vdW) copper-indium-thiophosphate (CuInP2 S6 or CIPS) have received widespread interest as they allow for dynamic control of conductive switching properties, which are appealing in the paradigm-shift computing. The intricate couplings between ferroelectric polarization and ionic conduction in 2D vdW CIPS facilitate the manipulation and dynamic control of conductive behaviors. However, the complex interplays and underlying mechanisms are not yet fully explored and understood. Here, by investigating polarization switching and ionic conduction in the temperature and applied electric field domains, it is discovered that the conducting mechanisms of CIPS can be divided into four distinctive states (or modes) with transitional boundaries, depending on the dynamics of Cu ions in the material. Further, it demonstrates that dynamically-tunable synaptic responsive behavior can be well implemented by governing the working-state transition. This research provides an in-depth, quantitative understanding of the complex phenomena of conductive switching in 2D vdW CIPS with coexisting ferroelectric order and ionic disorder. The developed insights in this work lay the ground for implementing high-performance, function-enriched devices for information processing, data storage, and neuromorphic computing based on the 2D ferroionic material systems.

12.
RNA ; 29(5): 675-690, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36810233

RESUMO

Rapid plastic response to environmental changes, which involves extremely complex underlying mechanisms, is crucial for organismal survival during many ecological and evolutionary processes such as those in global change and biological invasions. Gene expression is among the most studied molecular plasticity, while co- or posttranscriptional mechanisms are still largely unexplored. Using a model invasive ascidian Ciona savignyi, we studied multidimensional short-term plasticity in response to hyper- and hyposalinity stresses, covering the physiological adjustment, gene expression, alternative splicing (AS), and alternative polyadenylation (APA) regulations. Our results demonstrated that rapid plastic response varied with environmental context, timescales, and molecular regulatory levels. Gene expression, AS, and APA regulations independently acted on different gene sets and corresponding biological functions, highlighting their nonredundant roles in rapid environmental adaptation. Stress-induced gene expression changes illustrated the use of a strategy of accumulating free amino acids under high salinity and losing/reducing them during low salinity to maintain the osmotic homoeostasis. Genes with more exons were inclined to use AS regulations, and isoform switches in functional genes such as SLC2a5 and Cyb5r3 resulted in enhanced transporting activities by up-regulating the isoforms with more transmembrane regions. The extensive 3'-untranslated region (3'UTR) shortening through APA was induced by both salinity stresses, and APA regulation predominated transcriptomic changes at some stages of stress response. The findings here provide evidence for complex plastic mechanisms to environmental changes, and thereby highlight the importance of systemically integrating different levels of regulatory mechanisms in studying initial plasticity in evolutionary trajectories.


Assuntos
Aclimatação , Transcriptoma , Aclimatação/genética , Perfilação da Expressão Gênica , Regiões 3' não Traduzidas/genética , Isoformas de Proteínas/genética , Processamento Alternativo , Poliadenilação
13.
Sci Total Environ ; 864: 161062, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565867

RESUMO

Biochar has been frequently used as a persulfate (PS) activator due to its attractive properties, but dissolved organic matter (DOM) derived from the non­carbonized part of biochar has received less attention, not to mention its specific role and impact in biochar/PS systems. In this study, wheat straw, municipal sludge, and swine bone were selected as the representative feed stocks of biochar. Subsequently, these three types of biochar were adopted to explore the roles of DOM in biochar/PS systems. Although the composition and amount of DOM derived from different biochar were discrepant, they exhibited similar effect in biochar/PS systems. To be specific, the pore-clogging effect of DOM on biochar suppressed the adsorption capacity and catalytic performance of the three biochar. Furthermore, the removal of DOM decreased the environmental risk of these biochar/PS systems and enhanced the stability of the involved biochar. With respect to the variation in degradation mechanism, the removal of DOM increased the proportion of electron transfer pathway in unison, but the diminution in the roles of O2•¯ and 1O2 was more remarkable in bone-derived-biochar/PS systems. Additionally, the toxicity test illustrated that the leakage and accumulation of DOM were toxic to Chlorella sp., and the DOM from sludge-derived-biochar presented the highest toxicity. Overall, this study analyzes the roles of DOM derived from different biochar in biochar/PS systems and evaluates their environmental risk, which contributes to a comprehensive understanding of the fate of DOM derived from biochar.


Assuntos
Chlorella , Matéria Orgânica Dissolvida , Esgotos , Carvão Vegetal
14.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499002

RESUMO

Low temperature is an important environmental factor that affects the growth and development of trees and leads to the introduction of failure in the genetic improvement of trees. Acer pseudosieboldianum is a tree species that is well-known for its bright red autumn leaf color. These trees are widely used in landscaping in northeast China. However, due to their poor cold resistance, introduced A. pseudosieboldianum trees suffer severe freezing injury in many introduced environments. To elucidate the physiological indicators and molecular mechanisms associated with freezing damage, we analyzed the physiological indicators and transcriptome of A. pseudosieboldianum, using kits and RNA-Seq technology. The mechanism of A. pseudosieboldianum in response to freezing stress is an important scientific question. In this study, we used the shoots of four-year-old A. pseudosieboldianum twig seedlings, and the physiological index and the transcriptome of A. pseudosieboldianum under low temperature stress were investigated. The results showed that more than 20,000 genes were detected in A. pseudosieboldianum under low temperature (4 °C) and freezing temperatures (-10 °C, -20 °C, -30 °C, and -40 °C). There were 2505, 6021, 5125, and 3191 differential genes (DEGs) between -10 °C, -20°C, -30°C, -40 °C, and CK (4 °C), respectively. Among these differential genes, 48 genes are involved in the MAPK pathway and 533 genes are involved in the glucose metabolism pathway. In addition, the important transcription factors (MYB, AP2/ERF, and WRKY) involved in freezing stress were activated under different degrees of freezing stress. A total of 10 sets of physiological indicators of A. pseudosieboldianum were examined, including the activities of five enzymes and the accumulation of five hormones. All of the physiological indicators except SOD and GSH-Px reached their maximum values at -30 °C. The enzyme activity of SOD was highest at -10 °C, and that of GSH-Px was highest at -20 °C. Our study is the first to provide a more comprehensive understanding of the differential genes (DEGs) involved in A. pseudosieboldianum under freezing stress at different temperatures at the transcriptome level. These results may help to clarify the molecular mechanism of cold tolerance of A. pseudosieboldianum and provide new insights and candidate genes for the genetic improvement of the freezing tolerance of A. pseudosieboldianum.


Assuntos
Acer , Regulação da Expressão Gênica de Plantas , Acer/genética , Perfilação da Expressão Gênica , Transcriptoma , Congelamento
15.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362393

RESUMO

Korean pine (Pinus koraiensis Sieb. et Zucc.), as the main tree species in northeast China, has important economic and ecological values. Currently, supplementary light has been widely used in plant cultivation projects. However, the studies about different supplementary light sources on the growth and development of Korean pine are few. In this study, the one with no supplementary light was used as the control, and two kinds of light sources were set up: light-emitting diode (LED) and incandescent lamp, to supplement light treatment of Korean pine. The spectrum and intensity of these two light sources were different. The results showed that the growth and physiological-biochemical indicators were significantly different under different supplementary light treatments. The biomass of supplementary light treatment was significantly lower than the control. Compared with the control, IAA and GA were lower, and JA, ABA, ZT, and ETH were higher under supplementary light conditions. Photosynthetic parameters in supplementary light conditions were significantly lower than the control. Supplemental light induces chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid accumulation. From RNA-seq data, differentially expressed genes (DEGs) were observed in all the comparison groups, and there were 487 common DEGs. The expression levels of DEGs encoding transcription factors were also changed. According to GO and KEGG analysis, the plant hormone signal transduction, circadian rhythm-plant, and flavonoid biosynthesis pathways were the most enriched. These results provided a theoretical basis for the response of Korean pine to different supplementary lights.


Assuntos
Pinus , Pinus/genética , Transcriptoma , Clorofila A , Perfilação da Expressão Gênica , Árvores/genética , China
16.
Front Plant Sci ; 13: 1020706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388573

RESUMO

The MADS-box gene family plays a crucial role in multiple developmental processes of plants, especially in floral organ specification and the regulation of fruit development and ripening. Juglans mandshurica is a precious fruit material whose quality and yield are determined by floral organ development. The molecular mechanism of J. mandshurica female and male flower development depending on MADS-box genes remains unclear. In our study, 67 JmMADS genes were identified and unevenly distributed on 15 of 16 J. mandshurica chromosomes. These genes were divided into two types [type I (Mα, Mγ, Mδ) and type II (MIKC)]. The gene structure and motif analyses showed that most genes belonging to the same type had similar gene structures and conserved motifs. The analysis of syntenic relationships showed that MADS-box genes in J. mandshurica, J. sigillata, and J. regia exhibited the highest homology and great collinearity. Analysis of cis-acting elements showed that JmMADS gene promoter regions contained light, stress and hormone response cis-acting elements. The gene expression patterns demonstrated that 30 and 26 JmMADS genes were specifically expressed in the female and male flowers, respectively. In addition, 12 selected genes common to J. mandshurica female and male flowers were significantly upregulated at the mature stage and were used to validate the reliability of the transcriptome data using quantitative real-time PCR. This comprehensive and systematic analysis of J. mandshurica MADS-box genes lays a foundation for future studies on MADS-box gene family functions.

17.
Front Plant Sci ; 13: 991874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237500

RESUMO

Light is not only a very important source of energy for the normal growth and development of plants, but also a regulator of many development and metabolic processes. The mechanism of plant growth and development under low light conditions is an important scientific question. With the promulgation of the law to stop natural forest cutting, understory regeneration is an important method for artificial forest afforestation. Here, the growth and physiological indexes of Juglans mandshurica, an important hardwood species in Northeast China, were measured under different shade treatments. In addition, transcriptome and metabolome were compared to analyze the molecular mechanism of shade tolerance in J. mandshurica. The results showed that the seedling height of the shade treatment group was significantly higher than that of the control group, and the 50% light (L50) treatment was the highest. Compared with the control group, the contents of gibberellin, abscisic acid, brassinolide, chlorophyll a, and chlorophyll b in all shade treatments were significantly higher. However, the net photosynthetic rate and water use efficiency decreased with increasing shade. Furthermore, the transcriptome identified thousands of differentially expressed genes in three samples. Using enrichment analysis, we found that most of the differentially expressed genes were enriched in photosynthesis, plant hormone signal transduction and chlorophyll synthesis pathways, and the expression levels of many genes encoding transcription factors were also changed. In addition, analysis of differentially accumulated metabolites showed that a total of 470 differential metabolites were identified, and flavonoids were the major differential metabolites of J. mandshurica under light stress. These results improved our understanding of the molecular mechanism and metabolite accumulation under light stress in J. mandshurica.

18.
Adv Mater ; 34(51): e2207371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36217845

RESUMO

Brain-inspired neuromorphic computing systems with the potential to drive the next wave of artificial intelligence demand a spectrum of critical components beyond simple characteristics. An emerging research trend is to achieve advanced functions with ultracompact neuromorphic devices. In this work, a single-transistor neuron is demonstrated that implements excitatory-inhibitory (E-I) spatiotemporal integration and a series of essential neuron behaviors. Neuronal oscillations, the fundamental mode of neuronal communication, that construct high-dimensional population code to achieve efficient computing in the brain, can also be demonstrated by the neuron transistors. The highly scalable E-I neuron can be the basic building block for implementing core neuronal circuit motifs and large-scale architectural plans to replicate energy-efficient neural computations, forming the foundation of future integrated neuromorphic systems.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Neurônios
19.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076949

RESUMO

Light is one of the most important environmental cues that affects plant development and regulates its behavior. Light stress directly inhibits physiological responses and plant tissue development and even induces mortality in plants. Korean pine (Pinus koraiensis) is an evergreen conifer species widely planted in northeast China that has important economic and ecological value. However, the effects of light stress on the growth and development of Korean pine are still unclear. In this study, the effects of different shading conditions on physiological indices, molecular mechanisms and metabolites of Korean pine were explored. The results showed that auxin, gibberellin and abscisic acid were significantly increased under all shading conditions compared with the control. The contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid also increased as the shading degree increased. Moreover, a total of 8556, 3751 and 6990 differentially expressed genes (DEGs) were found between the control and HS (heavy shade), control and LS (light shade), LS vs. HS, respectively. Notably, most DEGs were assigned to pathways of phytohormone signaling, photosynthesis, carotenoid and flavonoid biosynthesis under light stress. The transcription factors MYB-related, AP2-ERF and bHLH specifically increased expression during light stress. A total of 911 metabolites were identified, and 243 differentially accumulated metabolites (DAMs) were detected, among which flavonoid biosynthesis (naringenin chalcone, dihydrokaempferol and kaempferol) metabolites were significantly different under light stress. These results will provide a theoretical basis for the response of P. koraiensis to different light stresses.


Assuntos
Pinus , Carotenoides/metabolismo , Clorofila A/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Pinus/metabolismo , Transcriptoma
20.
ACS Appl Mater Interfaces ; 14(31): 35917-35926, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35882423

RESUMO

Brain-inspired intelligent systems demand diverse neuromorphic devices beyond simple functionalities. Merging biomimetic sensing with weight-updating capabilities in artificial synaptic devices represents one of the key research focuses. Here, we report a multiresponsive synapse device that integrates synaptic and optical-sensing functions. The device adopts vertically stacked graphene/h-BN/WSe2 heterostructures, including an ultrahigh-mobility readout layer, a weight-control layer, and a dual-stimuli-responsive layer. The unique structure endows synapse devices with excellent synaptic plasticity, short response time (3 µs), and excellent optical responsivity (105 A/W). To demonstrate the application in neuromorphic computing, handwritten digit recognition was simulated based on an unsupervised spiking neural network (SNN) with a precision of 90.89%, well comparable with the state-of-the-art results. Furthermore, multiterminal neuromorphic devices are demonstrated to mimic dendritic integration and photoswitching logic. Different from other synaptic devices, the research work validates multifunctional integration in synaptic devices, supporting the potential fusion of sensing and self-learning in neuromorphic networks.


Assuntos
Redes Neurais de Computação , Sinapses , Biomimética , Aprendizagem , Plasticidade Neuronal , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA