Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Acta Biomater ; 169: 372-386, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597679

RESUMO

Recent studies have demonstrated the critical role of cardiac-resident macrophages (cMacs) in the maintenance of physiological homeostasis. However, recruitment of circulating monocyte-derived macrophages decreases cMac levels post-myocardial infarction (MI). Transplanting cMacs is not an ideal option due to their low survival rates and the risk of immunological rejection. However, extracellular vesicle therapy has the potential to provide a feasible and safe alternative for cardiac repair. In this study, cell membrane-modified extracellular vesicles (MmEVs) were developed for heart repair by modifying cMac-derived extracellular vesicles (mEVs) with monocyte membranes, resulting in immune evasion and sequential targeted localization to damaged regions through expression of CD47 on MmEVs and strong affinity between monocyte membrane proteins and CCL2. Additionally, to fully exploit the potential clinical application of MmEVs and achieve a better curative effect, thymosin ß4 (Tß4) was loaded into the nanoparticles, resulting in Tß4-MmEVs. In vitro experiments indicated that both the MmEVs and Tß4-MmEVs promoted cardiomyocyte proliferation and endothelial cell migration. Animal experiments suggested that MI mice treated with MmEVs and Tß4-MmEVs exhibited reduced myocardial fibrosis and increased vascular density compared to the control group. Thus, we posit that these targeted nanoparticles hold significant potential for MI adjuvant therapy and may open new avenues for cardiac repair and regeneration. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) derived from bioactive parent cell sources involved in pathological and repair processes for cardiovascular disease have emerged as a compelling strategy for regenerative therapy. In this study, we constructed monocyte membrane-modified extracellular vesicles loaded with a drug (Tß4-MmEVs) for heart repair that exhibit extraordinary abilities of immune evasion and sequential localization to damaged regions owing to the presence of CD47 and the strong affinity between monocytes and damaged cardiomyocytes and endothelial cells. The bioactivities of Tß4-MmEVs on enhancing cardiomyocyte and endothelial cell proliferation were validated both in vitro and in vivo. Effective development and implementation of therapeutically membrane-modified nanoparticles from homologous origins can provide a reference for adjuvant therapy in clinical MI management.


Assuntos
Antígeno CD47 , Monócitos , Animais , Camundongos , Células Endoteliais , Macrófagos , Miócitos Cardíacos
2.
Adv Healthc Mater ; 12(25): e2300696, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37338936

RESUMO

Stem cell-based therapies have demonstrated significant potential for use in heart regeneration. An effective paradigm for heart repair in rodent and large animal models is the transplantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Despite this, the functional and phenotypical immaturity of 2D-cultured hiPSC-CMs, particularly their low electrical integration, poses a caveat for clinical translation. In this study, a supramolecular assembly of a glycopeptide containing a cell adhesion motif-RGD, and saccharide-glucose (Bio-Gluc-RGD) is designed to enable the 3D spheroid formation of hiPSC-CMs, promoting cell-cell and cell-matrix interactions that occur during spontaneous morphogenesis. HiPSC-CMs in spheroids are prone to be phenotypically mature and developed robust gap junctions via activation of the integrin/ILK/p-AKT/Gata4 pathway. Monodispersed hiPSC-CMs encapsulated in the Bio-Gluc-RGD hydrogel are more likely to form aggregates and, therefore, survive in the infarcted myocardium of mice, accompanied by more robust gap junction formation in the transplanted cells, and hiPSC-CMs delivered with the hydrogels also displayed angiogenic effect and anti-apoptosis capacity in the peri-infarct area, enhancing their overall therapeutic efficacy in myocardial infarction. Collectively, the findings illustrate a novel concept for modulating hiPSC-CM maturation by spheroid induction, which has the potential for post-MI heart regeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Glicopeptídeos/metabolismo , Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Oligopeptídeos/metabolismo , Diferenciação Celular
3.
Nat Commun ; 14(1): 2094, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055411

RESUMO

Extracellular vesicles have shown good potential in disease treatments including ischemic injury such as myocardial infarction. However, the efficient production of highly active extracellular vesicles is one of the critical limitations for their clinical applications. Here, we demonstrate a biomaterial-based approach to prepare high amounts of extracellular vesicles with high bioactivity from endothelial progenitor cells (EPCs) by stimulation with silicate ions derived from bioactive silicate ceramics. We further show that hydrogel microspheres containing engineered extracellular vesicles are highly effective in the treatment of myocardial infarction in male mice by significantly enhancing angiogenesis. This therapeutic effect is attributed to significantly enhanced revascularization by the high content of miR-126a-3p and angiogenic factors such as VEGF and SDF-1, CXCR4 and eNOS in engineered extracellular vesicles, which not only activate endothelial cells but also recruit EPCs from the circulatory system.


Assuntos
Células Progenitoras Endoteliais , Vesículas Extracelulares , Infarto do Miocárdio , Camundongos , Masculino , Animais , Neovascularização Fisiológica , Infarto do Miocárdio/terapia , Transdução de Sinais
4.
Braz. J. Pharm. Sci. (Online) ; 59: e211035, 2023. graf
Artigo em Inglês | LILACS | ID: biblio-1505835

RESUMO

Abstract Compound Danshen Dripping Pills (CDDPs) have been used in clinical treatment to protect the heart from ischemia/reperfusion (IR) injury for many years. However, the underlying mechanism implicated in the protective effects remains to be explored. Here, we determined the effects of CDDPs in Sprague-Dawley rats with the IR model. Cardiac function in vivo was assessed by echocardiography. Transmission electron microscopy, histological and immunohistochemical techniques, Western blotting and recombinant adeno-associated virus 9 transfection were used to illustrate the effects of CDDPs on IR and autophagy. Our results showed that pretreatment with CDDPs decreased the level of serum myocardial enzymes and infarct size in rats after IR. Apoptosis evaluation showed that CDDPs significantly ameliorated the cardiac apoptosis level after IR. Meanwhile, CDDPs pretreatment increased myocardial autophagic flux, with upregulation of LC3B, downregulation of p62, and increased autophagosomes and autolysosomes. Moreover, the autophagic flux inhibitor chloroquine could increase IR injury, while CDDPs could partially reverse the effects. Furthermore, our results showed that the activation of AMPK/mTOR was involved in the cardioprotective effect exerted by CDDPs. Herein, we suggest that CDDPs partially protect the heart from IR injury by enhancing autophagic flux through the activation of AMPK/mTOR.


Assuntos
Animais , Masculino , Ratos , Reperfusão/classificação , Traumatismo por Reperfusão/classificação , Western Blotting/instrumentação , Coração/fisiopatologia , Isquemia/classificação , Ecocardiografia/métodos , Microscopia Eletrônica de Transmissão/métodos , Infarto/patologia
5.
Bioact Mater ; 14: 416-429, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35386821

RESUMO

Currently, stem cell transplantations in cardiac repair are limited owing to disadvantages, such as immunological rejection and poor cell viability. Although direct injection of exosomes can have a curative effect similar to that of stem cell transplantation, high clearance hinders its application in clinical practice. Previous reports suggested that induction of coronary collateralization can be a desired method of adjunctive therapy for someone who had missed the optimal operation time to attenuate myocardial ischemia. In this study, to mimic the paracrine and biological activity of stem cells, we developed artificial stem cells that can continuously release Tß4-exosomes (Tß4-ASCs) by encapsulating specific exosomes within microspheres using microfluidics technology. The results show that Tß4-ASCs can greatly promote coronary collateralization in the periphery of the myocardial infarcted area, and its therapeutic effect is superior to that of directly injecting the exosomes. In addition, to better understand how it works, we demonstrated that the Tß4-ASC-derived exosomes can enhance the angiogenic capacity of coronary endothelial cells (CAECs) via the miR-17-5p/PHD3/Hif-1α pathway. In brief, as artificial stem cells, Tß4-ASCs can constantly release functional exosomes and stimulate the formation of collateral circulation after myocardial infarction, providing a feasible and alternative method for clinical revascularization.

6.
Biomaterials ; 279: 121231, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34739980

RESUMO

Cell therapy offers a promising paradigm for heart tissue regeneration. Human induced pluripotent stem cells (hiPS) and their cardiac derivatives are emerging as a novel treatment for post-myocardial infarction repair. However, the immature phenotype and function of hiPS-derived cardiomyocytes (hiPS-CMs), particularly poor electrical coupling, limit their potential as a therapy. Herein, we developed a hybrid gold nanoparticle (AuNP)-hyaluronic acid (HA) hydrogel matrix encapsulating hiPS-CMs to overcome this limitation. Methacrylate-modified-HA was used as the backbone and crosslinked with a matrix metalloproteinase-2 (MMP-2) degradable peptide to obtain a MMP-2-responsive hydrogel; RGD peptide was introduced as an adhesion point to enhance biocompatibility; AuNPs were incorporated to regulate the mechanical and topological properties of the matrix by significantly increasing its stiffness and surface roughness, thereby accelerating gap junction formation in hiPS-CMs and orchestrating calcium handling via the αnß1integrin-mediated ILK-1/p-AKT/GATA4 pathway. Transplanted AuNP-HA-hydrogel-encapsulated-hiPS-CMs developed more robust gap junctions in the infarcted mice heart and resynchronized electrical conduction of the ventricle post-myocardial infarction. The hiPS-CMs delivered by the hydrogels exerted stronger angiogenic effects, which also contributed to the recovery process. This study provides insight into constructing an injectable biomimetic for structural and functional renovation of the injured heart.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanopartículas Metálicas , Animais , Junções Comunicantes , Ouro , Humanos , Ácido Hialurônico , Metaloproteinase 2 da Matriz , Camundongos , Miócitos Cardíacos
7.
J Cell Physiol ; 236(11): 7342-7355, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33928642

RESUMO

Vascular remodeling and restenosis are common complications after percutaneous coronary intervention. Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play important roles in intimal hyperplasia-induced vascular restenosis. NK2 Homeobox 3 (Nkx2-3), a critical member of Nkx family, is involved in tissue differentiation and organ development. However, the role of Nkx2-3 in VSMCs proliferation and migration remains unknown. In this study, we used carotid balloon injury model and platelet-derived growth factor-BB (PDGF)-treated VSMCs as in vivo and in vitro experimental models. EdU assay and CCK-8 assay were used to detect cell proliferation. Migration was measured by scratch test. Hematoxylin and eosin staining and immunohistochemistry staining were used to evaluate the intimal hyperplasia. The autophagy level was detected by fluorescent mRFP-GFP-LC3 in vitro and by transmission electron microscopy in vivo. It was shown that Nkx2-3 was upregulated both in balloon injured carotid arteries and PDGF-stimulated VSMCs. Adenovirus-mediated Nkx2-3 overexpression inhibited intimal hyperplasia after balloon injury, and suppressed VSMCs proliferation and migration induced by PDGF. Conversely, silencing of Nkx2-3 by small interfering RNA exaggerated proliferation and migration of VSMCs. Furthermore, we found that Nkx2-3 enhanced autophagy level, while the autophagy inhibitor 3-MA eliminated the inhibitory effect of Nkx2-3 on VSMCs proliferation and migration both in vivo and in vitro. Moreover, Nkx2-3 promoted autophagy in VSMCs by activating the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway. These results demonstrated for the first time that Nkx2-3 inhibited VSMCs proliferation and migration through AMPK/mTOR-mediated autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Lesões das Artérias Carótidas/enzimologia , Movimento Celular , Proliferação de Células , Proteínas de Homeodomínio/fisiologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/fisiologia , Animais , Autofagia/efeitos dos fármacos , Becaplermina/farmacologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/prevenção & controle , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/ultraestrutura , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/ultraestrutura , Neointima , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Transcrição/genética , Remodelação Vascular
8.
Theranostics ; 11(8): 3725-3741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664858

RESUMO

Rationale: The compensatory activation of the renin-angiotensin system (RAS) after myocardial infarction (MI) plays a crucial role in the pathogenesis of heart failure. Most existing studies on this subject focus on mono- or dual-therapy of blocking the RAS, which exhibit limited efficacy and often causes serious adverse reactions. Few studies have been conducted on targeted therapy based on the activated RAS post-MI. Thus, the development of multiple-functional nanomedicine with concurrent targeting ability and synergistic therapeutic effect against RAS may show great promise in improving cardiac function post-MI. Methods: We utilized a cooperative self-assembly strategy constructing supramolecular nanofibers- telmisartan-doped co-assembly nanofibers ( TDCNfs ) to counter-regulate RAS through targeted delivery and combined therapy. TDCNfs were prepared through serial steps of solvent exchange, heating incubation, gelation, centrifugation, and lyophilization, in which the telmisartan was doped in the self-assembly process of Ang1-7 to obtain the co-assembly nanofibers wherein they act as both therapeutic agents and target-guide agents. Results: TDCNfs exhibited the desired binding affinity to the two different receptors, AT1R and MasR. Through the dual ligand-receptor interactions to mediate the coincident downstream pathways, TDCNfs not only displayed favorably targeted properties to hypoxic cardiomyocytes, but also exerted synergistic therapeutic effects in apoptosis reduction, inflammatory response alleviation, and fibrosis inhibition in vitro and in vivo, significantly protecting cardiac function and mitigating post-MI adverse outcomes. Conclusion: A dual-ligand nanoplatform was successfully developed to achieve targeted and synergistic therapy against cardiac deterioration post-MI. We envision that the integration of multiple therapeutic agents through supramolecular self-assembly would offer new insight for the systematic and targeted treatment of cardiovascular diseases.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Nanopartículas Multifuncionais/administração & dosagem , Nanopartículas Multifuncionais/química , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Nanofibras/administração & dosagem , Nanofibras/química , Medicina de Precisão , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sistema Renina-Angiotensina/fisiologia , Telmisartan/administração & dosagem
9.
Mol Cell Biochem ; 476(7): 2685-2701, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666830

RESUMO

Cardiac fibrosis is an important pathological change after myocardial infarction (MI). Its progression is essential for post-MI infarct healing, during which transforming growth factor beta1 (TGF-ß1) plays a critical role. Limb-bud and Heart (LBH), a newly discovered target gene of TGF-ß1, was shown to promote normal cardiogenesis. αB-crystallin (CRYAB), an LBH-interacting protein, was demonstrated to be involved in TGF-ß1-induced fibrosis. The roles and molecular mechanisms of LBH and CRYAB during cardiac fibrosis remain largely unexplored. In this study, we investigated the alterations of LBH and CRYAB expression in mouse cardiac tissue after MI. LBH and CRYAB were upregulated in activated cardiac fibroblasts (CFs), while in vitro TGF-ß1 stimulation induced the upregulation of LBH, CRYAB, and fibrogenic genes in primary CFs of neonatal rats. The results of the ectopic expression of LBH proved that LBH accelerated CF proliferation under hypoxia, mediated the expression of CRYAB and fibrogenic genes, and promoted epithelial-mesenchymal transition (EMT)-like processes in rat CFs, while subsequent CRYAB silencing reversed the effects induced by elevated LBH expression. We also verified the protein-protein interaction (PPI) between LBH and CRYAB in fibroblasts. In summary, our work demonstrated that LBH promotes the proliferation of CFs, mediates TGF-ß1-induced fibroblast-to-myofibroblast transition and EMT-like processes through CRYAB upregulation, jointly functioning in post-MI infarct healing. These findings suggest that LBH could be a promising potential target for the study of cardiac repair and cardiac fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fibrose , Infarto do Miocárdio/patologia , Miofibroblastos/patologia , Ratos , Ratos Sprague-Dawley
10.
J Mater Chem B ; 8(34): 7713-7722, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32724972

RESUMO

Stem-cell therapy has been proved as a promising strategy for myocardial infarction (MI) treatment. However, the therapeutic efficacy is mainly limited by the cellular activity of transplanted mesenchymal stem cells (MSCs). In this study, a novel bioglass (BG)/γ-polyglutamic acid (γ-PGA)/chitosan (CS) hydrogel was obtained by in situ adding BG to stimulate the imine bond formation. And the effect of the composite hydrogel on MI therapeutic efficacy was evaluated in a rat acute myocardial infarction (AMI) model in vivo and the possible mechanism of the BG/γ-PGA/CS hydrogel for the stimulation of the intercellular interaction between MSCs and cardiomyocytes (CMs) was explored by a MSC and CM co-culture experiment in vitro. The implantation of the MSC loaded BG/γ-PGA/CS composite hydrogel in the mice AMI model showed a significant improvement in the therapeutic efficacy with improved cardiac function, attenuation of heart remodeling, reduced cardiomyocyte apoptosis and accelerated vascularization. The in vitro cell experiments demonstrated that the BG/γ-PGA/CS hydrogel activated the intercellular interaction between MSCs and CMs, which resulted in reduced cell apoptosis and enhanced angiogenesis. Silicate based bioactive hydrogels activated MSCs and cell-cell interactions in cardiac tissue after AMI and significantly enhanced the efficacy, which suggests that this bioactive hydrogel based approach is an effective way to enhance stem-cell therapy.


Assuntos
Hidrogéis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/terapia , Animais , Apoptose/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Quitosana/química , Vidro/química , Hidrogéis/química , Iminas/química , Células-Tronco Mesenquimais/citologia , Camundongos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ácido Poliglutâmico/química
11.
Adv Sci (Weinh) ; 7(10): 2000544, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32440490

RESUMO

[This corrects the article DOI: 10.1002/advs.201801260.].

12.
Adv Sci (Weinh) ; 6(1): 1801260, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30643722

RESUMO

Although numerous therapies are widely applied clinically and stem cells and/or biomaterial based in situ implantations have achieved some effects, few of these have observed robust myocardial regeneration. The beneficial effects on cardiac function and structure are largely acting through paracrine signaling, which preserve the border-zone around the infarction, reduce apoptosis, blunt adverse remodeling, and promote angiogenesis. Ionic extracts from biomaterials have been proven to stimulate paracrine effects and promote cell-cell communications. Here, the paracrine stimulatory function of bioactive ions derived from biomaterials is integrated into the clinical concept of administration and proposed "ion therapy" as a novel strategy for myocardial infarction. In vitro, silicon- enriched ion extracts significantly increase cardiomyocyte viability and promote cell-cell communications, thus stimulating vascular formation via a paracrine effect under glucose/oxygen deprived conditions. In vivo, by intravenous injection, the bioactive silicon ions act as "diplomats" and promote crosstalk in myocardial cells, stimulate angiogenesis, and improve cardiac function post-myocardial infarction.

13.
ACS Appl Mater Interfaces ; 10(29): 24459-24468, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29974744

RESUMO

Stem cell therapy has obtained extensive consensus to be an effective method for post myocardial infarction (MI) intervention. Induced pluripotent stem (iPS) cells, which are able to differentiate into multiple cell types, have the potential to generate cardiovascular lineage cells for myocardial repair after ischemic damage, but their poor retention rate significantly hinders the therapeutic efficacy. In the present study, we developed a supramolecular hydrogel which is formed by the self-assembly of folic acid (FA)-modified peptide via a biocompatible method (glutathione reduction) and suitable for cell encapsulation and transplantation. The iPS cells labeled with CM-Dil were transplanted into the MI hearts of mice with or without FA hydrogel encapsulation. The results corroborated that the FA hydrogel significantly improved the retention and survival of iPS cells in MI hearts post injection, leading to augmentation of the therapeutic efficacy of iPS cells including better cardiac function and much less adverse heart remodeling, by subsequent differentiation toward cardiac cells and stimulation of neovascularization. This study reported a novel supramolecular hydrogel based on FA-peptides capable of improving the therapeutic capacity of iPS cells, which held big potential in the treatment of MI.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Ácido Fólico , Hidrogéis , Camundongos , Infarto do Miocárdio , Miocárdio , Miócitos Cardíacos
14.
Cell Physiol Biochem ; 45(1): 88-107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29310113

RESUMO

Human neuropeptide Y (hNPY) is one of the most widely expressed neurotransmitters in the human central and peripheral nervous systems. It consists of 36 highly conserved amino acid residues, and was first isolated from the porcine hypothalamus in 1982. While it is the most recently discovered member of the pancreatic polypeptide family (which includes neuropeptide Y, gut-derived hormone peptide YY, and pancreatic polypeptide), NPY is the most abundant peptide found in the mammalian brain. In order to exert particular functions, NPY needs to bind to the NPY receptor to activate specific signaling pathways. NPY receptors belong to the class A or rhodopsin-like G-protein coupled receptor (GPCR) family and signal via cell-surface receptors. By binding to GPCRs, NPY plays a crucial role in various biological processes, including cortical excitability, stress response, food intake, circadian rhythms, and cardiovascular function. Abnormal regulation of NPY is involved in the development of a wide range of diseases, including obesity, hypertension, atherosclerosis, epilepsy, metabolic disorders, and many cancers. Thus far, five receptors have been cloned from mammals (Y1, Y2, Y4, Y5, and y6), but only four of these (hY1, hY2, hY4, and hY5) are functional in humans. In this review, we summarize the structural characteristics of human NPY receptors and their role in metabolic diseases.


Assuntos
Doenças Metabólicas/etiologia , Receptores de Neuropeptídeo Y/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Dislipidemias/etiologia , Dislipidemias/metabolismo , Dislipidemias/terapia , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/terapia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/terapia , Receptores de Neuropeptídeo Y/química , Receptores de Neuropeptídeo Y/genética , Transdução de Sinais
15.
Sci Rep ; 7(1): 15826, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158523

RESUMO

The effect of transplanted rat mesenchymal stem cells (MSCs) can be reduced by extracellular microenvironment in myocardial infarction (MI). We tested a novel small-molecular hydrogel (SMH) on whether it could provide a scaffold for hepatocyte growth factor (HGF)-modified MSCs and alleviate ventricular remodeling while preserving cardiac function after MI. Overexpression of HGF in MSCs increased Bcl-2 and reduced Bax and caspase-3 levels in response to hypoxia in vitro. Immunocytochemistry demonstrated that cardiac troponin (cTnT), desmin and connexin 43 expression were significantly enhanced in the 5-azacytidine (5-aza) with SMH group compared with the 5-aza only group in vitro and in vivo. Bioluminescent imaging indicated that retention and survival of transplanted cells was highest when MSCs transfected with adenovirus (ad-HGF) were injected with SMH. Heart function and structure improvement were confirmed by echocardiography and histology in the Ad-HGF-SMHs-MSCs group compared to other groups. Our study showed that: HGF alleviated cell apoptosis and promoted MSC growth. SMHs improved stem cell adhesion, survival and myocardial cell differentiation after MSC transplantation. SMHs combined with modified MSCs significantly decreased the scar area and improved cardiac function.


Assuntos
Coração/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Adenoviridae/genética , Animais , Caspase 3/genética , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/fisiopatologia , Fator de Crescimento de Hepatócito/genética , Humanos , Hidrogéis/administração & dosagem , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Remodelação Ventricular/genética , Proteína X Associada a bcl-2/genética
16.
Int J Mol Med ; 40(2): 418-426, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28627637

RESUMO

Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for ischemic heart disease; however, the low survival rate of transplanted cells limits their therapeutic efficacy. The aim of this study was to investigate whether the dual genetic modification of vascular endothelial growth factor (VEGF) and B­cell lymphoma­2 (Bcl­2) confers a higher expression level of the target genes, better survival and a stronger paracrine effect in MSCs in an adverse environment than the modification of the individual genes. For this purpse, a lentiviral vector was constructed by using a self­cleaving T2A peptide sequence to link and achieve the co­overexpression of VEGF and Bcl­2. Rat MSCs were transfected to obtain cell lines that exhibited a stable overexpression. An in vitro model of oxygen glucose deprivation (OGD) was applied to mimic the ischemic microenvironment, and cell apoptosis, autophagy and the paracrine effects were then determined. Compared with the MSCs in which individual genes were modified and the control MSCs, the MSCs which were subjected to dual genetic modification had a higher expression level of the target genes, a more rapid proliferation, reduced apoptosis, decreased autophagy and an enhanced paracrine effect. Furthermore, the suppression of autophagy was found to contribute to the inhibition of apoptosis in this in vitro OGD model. On the whole, these data indicate that the co­overexpression of VEGF and Bcl­2 protects MSCs in an ischemic environment by inhibiting apoptosis, suppressing autophagy and enhancing the paracrine effects.


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , Células-Tronco Mesenquimais/citologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transfecção , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Apoptose , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Expressão Gênica , Glucose/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Comunicação Parácrina , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA