Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 22(1): 57, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430367

RESUMO

BACKGROUND: Acquired immunodeficiency syndrome (AIDS) is associated with a high rate of pulmonary infections (bacteria, fungi, and viruses). To overcome the low sensitivity and long turnaround time of traditional laboratory-based diagnostic strategies, we adopted metagenomic next-generation sequencing (mNGS) technology to identify and classify pathogens. RESULTS: This study enrolled 75 patients with AIDS and suspected pulmonary infections who were admitted to Nanning Fourth People's Hospital. Specimens were collected for traditional microbiological testing and mNGS-based diagnosis. The diagnostic yields of the two methods were compared to evaluate the diagnostic value (detection rate and turn around time) of mNGS for infections with unknown causative agent. Accordingly, 22 cases (29.3%) had a positive culture and 70 (93.3%) had positive valve mNGS results (P value < 0.0001, Chi-square test). Meanwhile, 15 patients with AIDS showed concordant results between the culture and mNGS, whereas only one 1 patient showed concordant results between Giemsa-stained smear screening and mNGS. In addition, mNGS identified multiple microbial infections (at least three pathogens) in almost 60.0% of patients with AIDS. More importantly, mNGS was able to detect a large variety of pathogens from patient tissue displaying potential infection and colonization, while culture results remained negative. There were 18 members of pathogens which were consistently detected in patients with and without AIDS. CONCLUSIONS: In conclusion, mNGS analysis provides fast and precise pathogen detection and identification, contributing substantially to the accurate diagnosis, real-time monitoring, and treatment appropriateness of pulmonary infection in patients with AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida , Pneumonia , Humanos , Síndrome da Imunodeficiência Adquirida/complicações , Sequenciamento de Nucleotídeos em Larga Escala , Corantes Azur , Hospitalização , Hospitais
2.
Stem Cells Int ; 2023: 8282961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197688

RESUMO

Chronic refractory wounds (CRW) are one of the most serious clinical challenges for surgeons to address. Stromal vascular fraction gels (SVFG), including human adipose stem cells (hASCs), have excellent vascular regenerative and tissue repair properties. Here, we combined single-cell RNA sequencing (scRNA-seq) of leg subcutaneous adipose tissue samples with scRNA-seq data from abdominal subcutaneous adipose tissue, leg subcutaneous adipose tissue, and visceral adipose tissue samples from public databases. The results showed specific differences in cellular levels in adipose tissue from different anatomical site sources. We identified cells including CD4+ T cells, hASCs, adipocyte (APC), epithelial (Ep) cells, and preadipocyte. In particular, the dynamics between groups of hASCs, epithelial cells, APCs, and precursor cells in adipose tissue of different anatomical site origins were more significant. Furthermore, our analysis reveals alterations at the cellular level and molecular level, as well as the biological signaling pathways involved in these subpopulations of cells with specific alterations. In particular, certain subpopulations of hASCs have higher cell stemness, which may be related to lipogenic differentiation capacity and may be beneficial in promoting CRW treatment and healing. In general, our study captures a human single-cell transcriptome profile across adipose depots, the cell type identification and analysis of which may help dissect the function and role of cells with specific alterations present in adipose tissue and may provide new ideas and approaches for the treatment of CRW in the clinical setting.

3.
Biomed Pharmacother ; 164: 114881, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210895

RESUMO

Osteoarthritis (OA) is considered to be the most common joint disorder. Exogenous drug intervention is one of the effective means for OA treatment. Clinical applications of numerous drugs are restricted owing to the short retention as well as rapid clearance in the joint cavity. A wide variety of carrier-based nanodrugs have been developed, but additional carriers may bring unexpected side effects or even toxicity. Herein, by exploiting the spontaneous fluorescence of Curcumin, we designed a new carrier-free self-assembly nanomedicine Curcumin (Cur)/icariin (ICA) nanoparticles with adjustable particle size, which is composed of two small-molecule natural drugs assembled via π-π stacking interaction. Experimental results revealed that Cur/ICA NPs endowed with little cytotoxicity, high cellular uptake and sustained drug release, could inhibit secretion of inflammatory cytokines and reduce cartilage degeneration. Moreover, both the in vitro and in vivo experiments showed the NPs exerted superior synergism effects in anti-inflammatory and cartilage protection than either Cur or ICA alone, and self-monitored its retention by autofluorescence. Thus, the new self-assembly nano-drug combining Cur and ICA represents a new strategy for the treatment of osteoarthritis.


Assuntos
Curcumina , Nanopartículas , Osteoartrite , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/uso terapêutico , Osteoartrite/tratamento farmacológico , Tamanho da Partícula
4.
Curr Stem Cell Res Ther ; 18(1): 127-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34872484

RESUMO

BACKGROUND: Advanced platelet-rich fibrin extract (APRFE) contains a high concentration of various cytokines that are helpful for improving stem cells repair function. OBJECTIVE: However, the underlying mechanism of APRFE improving stem cell repairing is not clear. METHODS: We produced APRFE by centrifuging fresh peripheral blood samples and isolated and identified human adipose-derived mesenchymal stem cells (ADMSCs). The abundance of cytokines contained in APRFE was detected by the Enzyme-linked immunosorbent assay (ELISA). The ADMSCs treated with or without APRFE were collected for transcriptome sequencing. RESULTS: Based on the sequencing data, the expression profiles were contracted. The differentially expressed genes and lncRNA (DEGs and DElncRNAs) were obtained using for the differential expression analysis. The lncRNA-miRNA-mRNA network was constructed based on the miRNet database. The further enrichment analysis results showed that the biological functions were mainly related to proliferation, differentiation, and cell-cell function. To explore the role of APRFE, the protein-protein interaction network was constructed among the cytokines included in APRFE and DEGs. Furthermore, we constructed the global regulatory network based on the RNAInter and TRRUST database. The pathways in the global regulatory network were considered as the core pathways. We found that the DEGs in the core pathways were associated with stemness scores. CONCLUSION: In summary, we predicted that APRFE activated three pathways (tryptophan metabolism, mTOR signaling pathway, and adipocytokine signaling) to promote the proliferation and differentiation of ADMSCs. The finding may be helpful for guiding the application of ADMSCs in the clinic.


Assuntos
Células-Tronco Mesenquimais , Fibrina Rica em Plaquetas , RNA Longo não Codificante , Humanos , Triptofano/farmacologia , Diferenciação Celular/genética , Citocinas/genética , Proliferação de Células
5.
Ann Transl Med ; 10(17): 933, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36172108

RESUMO

Background: To evaluate the effect of highly purified stromal vascular fraction gel (SVFG) combined with advanced platelet-rich fibrin extract (APRFE) in treatment of irradiated skin and soft tissue injury. Methods: The subcutaneous fat and whole blood of 4 rabbits were collected to isolate the SVFG and APRFE, respectively. Forty-eight rabbits were divided into 4 groups to prepare irradiated skin injury models with 25 Gy for 24 hours; corresponding dose were performed subcutaneously injected into wounds. In group A, the rabbits were treated with 0.3 mL APRFE combined with 1 mL SVFG. In group B, the rabbits were treated with 1 mL SVFG. In group C, the rabbits were treated with 0.3 mL APRFE, and group D was treated with 1 mL normal saline. The wound healing was detected on the 2, 5, 9 and 14 d after intervention. The wounds tissue was cut for hematoxylin and eosin (HE) staining to observe the structure and Masson staining to observe the collagen content. The expression of CD31 in each group was detected by immunohistochemistry (IHC), the protein and mRNA levels of K19, hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), interleukin 8 (IL-8) and interleukin 10 (IL-10) were detected respectively by Western blot (WB) and reverse transcription-polymerase chain reaction (RT-PCR) on 7, 14 and 28 d after intervention. Results: It is revealed that wound healing rates from 5 to 14 d in group A was significantly higher than that of control. The wounds healing rates in group B and C were significantly higher than that of control after 12 d. Masson staining results showed that the collagen content in group A was significantly higher than that of the other 3 groups on the 7, 14 and 28 d. The results of IHC showed that the expression of CD31 in group A was significantly higher than that of the other 3 groups on 7, 14 and 28 d. WB and RT-PCR results showed that relative expression levels of K19, HIF-1α, VEGF, IL-10 in group A were significantly higher than that of the other 3 groups on 7, 14 and 28 d. However, the relative expression levels of IL-8 in group A was significantly lower than that of the other 3 groups on 7, 14 and 28 d. Conclusions: SVFG combined with APRFE can promote the repair of irradiated skin and soft tissue injury by accelerating angiogenesis, promoting collagen synthesis and reducing inflammation.

6.
Ann Transl Med ; 10(2): 60, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282074

RESUMO

Background: The micro-autologous fat transplantation (MAFT) technique has demonstrated its feasibility in multiple medical fields, such as facial rejuvenation. Advanced platelet-rich fibrin (APRF), an autologous platelet concentrated on a fibrin membrane without added external factors, has shown significant potential for tissue restoration. However, the role of APRF in the modulation of MAFT remains unclear. Here, we aimed to explore the effect of APRF on MAFT. Methods: Adipose-derived stem cells (ASCs) were isolated from human gastric subcutaneous fat and treated with APRF. ELISA assays measured cytokines. The proliferation of ASCs was analyzed by CCK-8 assays. The levels of hypoxia-inducible factor-1α (HIF-1α), heat shock protein 70 (HSP70), insulin like growth factor 2 (IGF-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) were measured by ELISA assays, quantitative reverse transcription-PCR (qRT-PCR), and Western blot analysis. The effect of APRF/HIF-1α/VEGF on MAFT in vivo was analyzed in Balb/c nude mice. The BALB/c mice were subcutaneously co-transplanted with fat, APRF, and control shRNA, HIF-1α shRNA, or VEGF shRNA into the dorsal area. The serum and protein levels of the above cytokines were analyzed by ELISA assays and Western blot analysis. Lipid accumulation was measured by Oil Red O staining. The expression of CD34 was assessed by immunohistochemical staining. Results: APRF continuously secreted multiple cytokines, including epidermal growth factor (EGF), FGF-2, insulin like growth factor 1 (IGF-1), interleukin-1beta (IL-1ß), interleukin-4 (IL-4), platelet-derived growth factor alpha polypeptide b (PDGF-AB), platelet-derived growth factor beta polypeptide b (PDGF-BB), transforming growth factor-beta (TGF-ß), and VEGF. APRF was able to promote the proliferation of ASCs. APRF dose-dependently activated the expression of HIF-1α, HSP70, IGF-2, IL-6, IL-8, and VEGF in ASCs. APRF regulated the paracrine function of ASCs by modulating HIF-1α and VEGF. APRF increased the survival of MAFT by modulating HIF-1α and VEGF in vivo. Conclusions: APRF promotes the paracrine function and proliferation of ASCs and contributes to MAFT by modulating HIF-1α and VEGF. Our findings provide new insights into the mechanism by which APRF regulates MAFT.

7.
J Oncol ; 2022: 4984866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35027924

RESUMO

BACKGROUND: Studies have found that the abnormality of the Hedgehog signaling pathway is related to the occurrence and development of a variety of tumors, but the effect of this signaling pathway on melanoma cells is still unclear. METHODS: This study aimed to discuss the effect of Hedgehog signaling pathway on the proliferation and apoptosis of human malignant melanoma A375 cells and explore its possible mechanism in the proliferation and apoptosis of melanoma cells. Different concentrations of Hedgehog signaling pathway inhibitor cyclopamine (5, 10, 20 and 40 µM) were used to treat human melanoma A375 cells for 24, 48, and 72 h, and set a blank control group (0 µM). Trypan blue cell counting method was used to detect cell viability. MTT method was used to detect the inhibition rate of cell proliferation. Transwell was used to detect cell invasion, and flow cytometry was used to detect cell apoptosis. RESULTS: Through the trypan blue cell counting method and MTT experiment, it was found that the Hedgehog signaling pathway inhibitor cyclopamine has an inhibitory effect on the proliferation and viability of melanoma A375 cells (P < 0.05), and the proliferation inhibitory effect is enhanced with prolonged action time in a dose- and time-dependent manner. Transwell experiment showed that compared with the blank control group, the invasion and migration ability of the treated melanoma A375 cells are significantly reduced, and the difference is statistically significant (P < 0.05). Cell apoptosis experiment showed that compared with the blank control group, the apoptosis rate of A375 cells is significantly higher after treated by 40 µM cyclopamine for 24 h, and the difference is statistically significant (P < 0.05). Gli1 and Bcl-2 protein are highly expressed in melanoma A375 cells, and their expressions show a downward trend (P < 0.05) after being treated by cyclopamine. CONCLUSION: Cyclopamine inhibits cell proliferation and induces cell apoptosis by downregulating Gli1. Hedgehog signaling pathway can be used as a new target for the treatment of malignant melanoma, and multiple measures can be used to inhibit the signaling pathway to achieve a therapeutic effect.

8.
Ann Med ; 54(1): 314-325, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35068272

RESUMO

BACKGROUND: Therapeutic studies against human immunodeficiency virus type 1 (HIV-1) infection have become one of the important works in global public health. METHODS: Differential expression analysis was performed between HIV-positive (HIV+) and HIV-negative (HIV-) patients for GPL6947 and GPL10558 of GSE29429. Coexpression analysis of common genes with the same direction of differential expression identified modules. Module genes were subjected to enrichment analysis, Short Time-series Expression Miner (STEM) analysis, and PPI network analysis. The top 100 most connected genes in the PPI network were screened to construct the LASSO model, and AUC values were calculated to identify the key genes. Methylation modification of key genes were identified by the chAMP package. Differences in immune cell infiltration between HIV + and HIV- patients, as well as between antiretroviral therapy (ART) and HIV + patients, were calculated using ssGSEA. RESULTS: We obtained 3610 common genes, clustered into nine coexpression modules. Module genes were significantly enriched in interferon signalling, helper T-cell immunity, and HIF-1-signalling pathways. We screened out module genes with gradual changes in expression with increasing time from HIV enrolment using STEM software. We identified 12 significant genes through LASSO regression analysis, especially proteasome 20S subunit beta 8 (PSMB8) and interferon alpha inducible protein 27 (IFI27). The expression of PSMB8 and IFI27 were then detected by quantitative real-time PCR. Interestingly, IFI27 was also a persistently dysregulated gene identified by STEM. In addition, 10 of the key genes were identified to be modified by methylation. The significantly infiltrated immune cells in HIV + patients were restored after ART, and IFI27 was significantly associated with immune cells. CONCLUSION: The above results provided potential target genes for early diagnosis and treatment of HIV + patients. IFI27 may be associated with the progression of HIV infection and may be a powerful target for immunotherapy.


Assuntos
Infecções por HIV , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/uso terapêutico
9.
Curr Stem Cell Res Ther ; 17(8): 815-824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34844547

RESUMO

BACKGROUND: Human adipose-derived stem cells (hASCs) play an important role in regenerative medicine. OBJECTIVE: Exploring the mechanism of Rg1 in the promotion of the proliferation and adipogenic differentiation of hASCs is important in regenerative medicine research. METHODS: To observe ginsenoside Rg1 in promoting the proliferation and adipogenic differentiation of hASCs, Rg1 medium at different concentrations was established and tested using the cell counting kit-8 (CCK-8) assay, oil red O staining, alizarin red, and alcian blue. Compared to the control, differentially expressed genes (DEGs) were screened via DEG analysis, which was carried out in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. To explore the relationship among mRNA, long non-coding RNA (lncRNA) and microRNA (miRNA), we constructed a competing endogenous RNA (ceRNA) network. RESULTS: In this study, Rg1 was observed to promote the proliferation and adipogenic differentiation of hASCs. Additionally, enriched BPs and KEGG pathways may be involved in the promotion process, where FXR1 and Lnc-GAS5-AS1 were found to be regulatory factors. The regulatory network suggested that Rg1 could regulate the adipocytokine signaling pathway and IL-17 signaling pathway via FXR1 and Lnc-GAS5-AS1, which served as the mechanism encompassing the promotion of Rg1 on the proliferation and adipogenic differentiation of hASCs. CONCLUSION: A comprehensive transcriptional regulatory network related to the promotion ability of Rg1 was constructed, revealing mechanisms regarding Rg1's promotion of the proliferation and adipogenic differentiation of hASCs. The present study provides a theoretical basis for optimizing the function of hASCs.


Assuntos
Ginsenosídeos , MicroRNAs , RNA Longo não Codificante , Adipocinas/metabolismo , Azul Alciano/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ginsenosídeos/farmacologia , Humanos , Interleucina-17/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/efeitos dos fármacos
10.
Int J Gen Med ; 14: 9671-9679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34934344

RESUMO

AIM: The aim of the present study was to identify the association between tumor grade and liquid-liquid phase separation (LLPS)-related genes, and to generate a LLPS-related gene-based risk index (LLPSRI) as a prognostic tool for hepatocellular carcinoma (HCC). METHODS: Weighted gene correlation network analysis was performed to test whether the LLPS-related gene modules were associated with tumor grade of HCC. The candidate modules were subjected to functional enrichment analysis. We generated a LLPSRI using the expression profiles of the hub genes among the candidate modules in order to identify patients at high risk. Then, the biological characteristics of the high-risk patients were revealed using gene set enrichment analysis. Additionally, an independent external data set was used to validate the LLPSRI. RESULTS: Four gene modules showed a significant positive correlation with tumor grade and involved various cancer-related pathways. Among the hub genes, six were selected to generate the LLPSRI, which was significantly associated with prognosis of HCC patients. The LLPSRI could successfully divide patients with HCC into high- and low-risk groups, and patients in the high-risk group showed shorter overall survival than those in the low-risk group. E2F, MYC, and mTORC1 signaling may be important determinants of survival in the high-risk group. The prognostic value of the LLPSRI was validated with the independent external data set. CONCLUSION: We identified LLPS-related gene modules that are associated with HCC tumor grade. The LLPSRI may be useful as a prognostic marker of HCC, and it may reliably stratify patients into groups at low or high risk of worse survival. Our analysis also suggests that certain biological characteristics of HCC may be associated with high risk of worse survival.

11.
Int J Bioprint ; 7(4): 418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805597

RESUMO

In this study, porous polylactic acid/methotrexate (PLA/MTX) scaffolds were successfully fabricated by three-dimensional (3D) printing technology as controllable drug delivery devices to suppress tumor growth. Scanning electron microscopy and energy-dispersive spectrometer confirmed that MTX drug was successfully incorporated into the PLA filament. 3D-printed PLA/MTX scaffolds allow sustained release of drug molecules in vitro for more than 30 days, reducing systemic toxic side effects caused by injection or oral administration. In vitro cytotoxicity assay revealed that PLA/MTX scaffolds have a relatively high inhibitory effect on the tumor cells (MG-63, A549, MCF-7, and 4T1) and relatively low toxic effect on the normal MC3T3-E1 cells. Furthermore, results of in vivo experiments confirmed that PLA/MTX scaffolds highly suppressed tumor growth and no obvious side effects on the organs. All these results suggested that 3D-printed PLA/MTX scaffolds could be used as controllable drug delivery systems for tumor suppression.

12.
13.
Biomed Res Int ; 2021: 8836243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124262

RESUMO

Severe burns are acute wounds caused by local heat exposure, resulting in life-threatening systemic effects and poor survival. However, the specific molecular mechanisms remain unclear. First, we downloaded gene expression data related to severe burns from the GEO database (GSE19743, GSE37069, and GSE77791). Then, a gene expression analysis was performed to identify differentially expressed genes (DEGs) and construct protein-protein interaction (PPI) network. The molecular mechanism was identified by enrichment analysis and Gene Set Enrichment Analysis. In addition, STEM software was used to screen for genes persistently expressed during response to severe burns, and receiver operating characteristic (ROC) curve was used to identify key DEGs. A total of 2631 upregulated and 3451 downregulated DEGs were identified. PPI network analysis clustered these DEGs into 13 modules. Importantly, module genes mostly related with immune responses and metabolism. In addition, we identified genes persistently altered during the response to severe burns corresponding to survival and death status. Among the genes with high area under the ROC curve in the PPI network gene, CCL5 and LCK were identified as key DEGs, which may affect the prognosis of burn patients. Gene set variation analysis showed that the immune response was inhibited and several types of immune cells were decreased, while the metabolic response was enhanced. The results showed that persistent gene expression changes occur in response to severe burns, which may underlie chronic alterations in physiological pathways. Identifying the key altered genes may reveal potential therapeutic targets for mitigating the effects of severe burns.


Assuntos
Queimaduras , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Mapas de Interação de Proteínas/imunologia , Transcriptoma/imunologia , Queimaduras/genética , Queimaduras/imunologia , Queimaduras/patologia , Biologia Computacional , Humanos , Índices de Gravidade do Trauma
14.
Front Oncol ; 11: 569295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747905

RESUMO

Resveratrol (RSV) is known to possess anticancer properties in many types of cancers like breast cancer, in which POLD1 may serve as a potential target. However, the anticancer mechanism of RSV on triple negative breast cancer (TNBC) remains unclear. In the present study, the antitumor effects and mechanism of RSV on TNBC cells were analyzed by RNA sequencing (RNA-seq), which was then verified via cell counting kit-8 (CCK8), immunofluorescence, immunohistochemistry, Western Blot (WB), flow cytometry, and hematoxylin-eosin (HE) staining. According to the corresponding findings, the survival rate of MDA-MB-231 cells gradually decreased as RSV treatment concentration increased. The RNA-seq analysis results demonstrated that genes affected by RSV treatment were mainly involved in apoptosis and the p53 signaling pathway. Moreover, apoptosis of MDA-MB-231 cells induced by RSV was observed to be mainly mediated by POLD1. When treated with RSV, the expression levels of full length PARP1, PCNA, and BCL-2 were found to be significantly reduced, and the expression level of Cleaved-PARP1 as well as Cleaved-Caspase3 increased significantly. Additionally, the mRNA expression of POLD1 was significantly reduced after treatment with RSV, and the protein expression level was also inhibited by RSV in a concentration-dependent manner. The prediction of domain interaction suggested that RSV may bind to at least five functional domains of the POLD1 protein (6s1m, 6s1n, 6s1o, 6tny and 6tnz). Furthermore, after RSV treatment, the anti-apoptotic index (PCNA, BCL-2) of MDA-MB-231 cells was found to decrease while the apoptosis index (caspase3) increased. Moreover, the overexpression of POLD1 reduced the extent of apoptosis observed in MDA-MB-231 cells following RSV treatment. Moreover, animal experimental results showed that RSV had a significant inhibitory effect on the growth of live tumors, while POLD1 overexpression was shown to antagonize this inhibitory effect. Accordingly, this study's findings reveal that RSV may promote the apoptosis of TNBC cells by reducing the expression of POLD1 to activate the apoptotic pathway, which may serve as a potential therapy for the treatment of TNBC.

15.
Tissue Cell ; 71: 101506, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33607525

RESUMO

Advanced platelet-rich fibrin (A-PRF) is an autogenous biological material obtained from peripheral blood. A-PRF extract (A-PRFe) contains a high concentration of various cytokines that are increasingly appreciated for their roles in improving stem cell repairing function during tissue regeneration. However, the optimal A-PRFe concentration to stimulate stem cells is unknown. This study aimed to identify the optimal concentrations of A-PRFe to promote adipogenic and osteogenic differentiation of human adipose-derived stem cells (ASCs). We produced A-PRFe from A-PRF clots by centrifuging fresh peripheral blood samples and isolated and identified ASCs using surface CD markers and multilineage differentiation potential. Enzyme-linked immunosorbent assay (ELISA) showed the concentrations of several cytokines, including b-FGF, PDGF-BB, and others, increased gradually, peaked on day 7 and then decreased. Cell proliferation assays showed A-PRFe significantly stimulated ASC proliferation, and proliferation significantly increased at higher A-PRFe doses. The degree of adipogenic and osteogenic differentiation increased at higher A-PRFe concentrations in the culture medium, as determined by oil red O and alizarin red staining. Reverse transcription polymerase chain reaction (RT-PCR) showed that expression levels of genes related to adipogenic/osteogenic differentiation (PPARγ2, C/EBPα, FABP4, Adiponectin, and ALP, OPN, OCN, RUNX2), paracrine (HIF-1α, VEGF, IGF-2) and immunoregulation (HSP70, IL-8) function were higher in groups with a higher concentration of A-PRFe than in lower concentration groups. This study demonstrates that A-PRFe is ideal for use in ASC applications in regenerative medicine because it improves biological functions, including proliferation, adipogenic/osteogenic differentiation, and paracrine function in a dose-dependent manner.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Misturas Complexas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fibrina Rica em Plaquetas/química , Misturas Complexas/química , Relação Dose-Resposta a Droga , Humanos
16.
Aging (Albany NY) ; 12(23): 24255-24269, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33234725

RESUMO

Sorafenib has long been the only approved systemic therapy for advanced hepatocellular carcinoma (HCC), but most patients show primary or acquired drug resistance. In the present study, RNA was extracted from sorafenib-resistant and -sensitive clones of the HCC cell lines HepG2 and Huh7. Protein-protein interaction networks of the up- and down-regulated genes common to the two sorafenib-resistant cell lines were extracted and subjected to modular analysis in order to identify functional modules. Functional enrichment analysis showed the modules were involved in different biological processes and pathways. These results indicate that sorafenib resistance in HCC is complicated and heterogeneous. The potential regulators of each functional module, including transcription factors, microRNAs and long non-coding RNAs, were explored to construct a comprehensive transcriptional regulatory network related to sorafenib resistance in HCC. Our results provide new insights into sorafenib resistance of HCC at the level of transcriptional regulation.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mapas de Interação de Proteínas , Transdução de Sinais , Transcrição Gênica , Transcriptoma
17.
Aging (Albany NY) ; 12(21): 21186-21201, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33130636

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) are pluripotent stromal cells that can differentiate into a variety of cell types, including skin cells. High-throughput sequencing was performed on cells of different ages and cell passage, obtaining their methylation, mRNA expression, and protein profile data. The stemness of each sample was then calculated using the TCGAbiolinks package in R. Co-expression modules were identified using WGCNA, and a crosstalk analysis was performed on the corresponding modules. The ClusterProfile package was used for the functional annotation of module genes. Finally, the regulatory network diagram was visualized using the Cytoscape software. First, a total of 16 modules were identified, where 3 modules were screened that were most relevant to the phenotype. 29 genes were screened in combination of the RNA seq, DNA methylation seq and protein iTRAQ. Finally, a comprehensive landscape comprised of RNA expression, DNA methylation and protein profiles of age relevant ADSCs was constructed. Overall, the different omics of ADSCs were comprehensively analyzed in order to reveal mechanisms pertaining to their growth and development. The effects of age, cell passage, and stemness on the therapeutic effect of ADSCs were explored. Additionally, a theoretical basis for selecting appropriate ADSC donors for regenerative medicine was provided.


Assuntos
Envelhecimento/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Proteoma/metabolismo , Transcriptoma , Adulto Jovem
18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(10): 1305-1312, 2020 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-33063498

RESUMO

OBJECTIVE: To explored the effect of stromal cell-derived factor 1α (SDF-1α) on promoting the migration ability of rat adipose derived stem cells (rADSCs) by constructed the rADSCs overexpression SDF-1α via adenovirus transfection. METHODS: rADSCs were isolated from adipose tissue of 6-week-old SPF Sprague Dawley rats. Morphological observation, multi-directional differentiations (osteogenic, adipogenic, and chondrogenic inductions), and flow cytometry identification were performed. Transwell cell migration experiment was used to observe and screen the optimal concentration of exogenous SDF-1α to optimize the migration ability of rADSCs; the optimal multiplicity of infection (MOI) of rADSCs was screened by observing the cell status and fluorescence expression after transfection. Then the third generation of rADSCs were divided into 4 groups: group A was pure rADSCs; group B was rADSCs co-cultured with SDF-1α at the best concentration; group C was rADSCs infected with recombinant adenovirus-mediated green fluorescent protein (Adv-GFP) with the best MOI; group D was rADSCs infected with Adv-GFP-SDF-1α overexpression adenovirus with the best MOI. Cell counting kit 8 (CCK-8) and Transwell cell migration experiment were preformed to detect and compare the effect of exogenous SDF-1α and SDF-1α overexpression on the proliferation and migration ability of rADSCs. RESULTS: The cell morphology, multi-directional differentiations, and flow cytometry identification showed that the cultured cells were rADSCs. After screening, the optimal stimulating concentration of exogenous SDF-1α was 12.5 nmol/L; the optimal MOI of Adv-GFP adenovirus was 200; the optimal MOI of Adv-GFP-SDF-1α overexpression adenovirus was 400. CCK-8 method and Transwell cell migration experiment showed that compared with groups A and C, groups B and D could significantly improve the proliferation and migration of rADSCs ( P<0.05); the effect of group D on enhancing the migration of rADSCs was weaker than that of group B, but the effect of promoting the proliferation of rADSCs was stronger than that of group D ( P<0.05). CONCLUSION: SDF-1α overexpression modification on rADSCs can significantly promote the proliferation and migration ability, which may be a potential method to optimize the application of ADSCs in tissue regeneration and wound repair.


Assuntos
Adipócitos , Quimiocina CXCL12 , Animais , Ratos , Ratos Sprague-Dawley , Células-Tronco , Células Estromais
19.
Stem Cell Res Ther ; 11(1): 310, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698873

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (AD-MSCs) are a type of stem cell that is abundant and widely used. The molecular characteristics of AD-MSCs from different passages from donors of different ages have not been well elucidated. METHODS: Six kinds of AD-MSCs ((E1, E2, E3, Y1, Y2, and Y3) with E denoting cells derived from an elderly patient, Y denoting cells derived from a young patient, and 1, 2, and 3 representing passages 3, 6, and 10) were obtained from human abdominal adipose tissue. We obtained the protein expression profile, the mRNA expression profile, the lncRNA expression profile, and the methylation profile of each kind of AD-MSC by sequencing. After calculating the stemness indices, genes related to stemness were extracted. The multiomics correlation analysis was performed in the stemness-related genes. In addition, short time-series expression miner (STEM) analysis was performed for all cell passages and donor ages. To further explore the biological functions of the stemness-related genes, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, the lncRNA-KEGG network and transcription factor (TF)-KEGG network were constructed based on the RNAInter database and TRRUST v2 database. RESULTS: The stemness of the Y1, E1, and Y2 cells was higher than that of the E2, Y3, and E3 cells. The stemness was the highest for Y1 cells and the lowest for E3 cells. STEM analysis showed that five stemness-related gene clusters were associated with the cell passages, and only one gene cluster was associated with age. The enrichment analysis results showed that the biological processes (BPs) and KEGG pathways were mainly involved in the proliferation, differentiation, and migration of cells. The global regulatory landscape of AD-MSCs was constructed: 25 TFs and 16 lncRNAs regulated 21 KEGG pathways through 27 mRNAs. Furthermore, we obtained a core stemness-related gene set consisting of ITGAV, MAD2L1, and PCNA. These genes were expressed at higher levels in Y1 cells than in E3 cells. CONCLUSION: The multiomics global landscape of stemness-related gene clusters was determined for AD-MSCs, which may be helpful for selecting AD-MSCs with increased stemness.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Tecido Adiposo , Idoso , Diferenciação Celular , Células Cultivadas , Humanos , Família Multigênica
20.
Aging (Albany NY) ; 12(14): 14830-14848, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32706337

RESUMO

In this study, human adipose stem cells were isolated from subcutaneous fat in the thigh (htASCs), abdomen (haASCs) and breast (hbASCs). Flow cytometry was used to detect cell surface markers, and an enzyme-linked immunosorbent assay was used to detect paracrine activity. Paracrine gene expression in the three cell types was examined using real-time qPCR, and adipogenic ability was assessed using Oil Red O staining. RNA from third-passage haASCs and hbASCs was sequenced. The results showed that the differentiation potential marker markers CD49d and CD54 were similar across hbASCs from 10 subjects. The hbASCs showed higher colony forming ability and expression of fibroblast growth factor-2, tissue inhibitor of metalloproteinase-1 and stromal cell derived factor-1 than htASCs and haASCs. Stimulating hbASCs with FGF2 promoted adipogenic differentiation, while treating the cells with the PI3K inhibitor LY294002 inhibited differentiation. These results suggest that the PI3K/Akt signaling pathway can promote proliferation and adipogenic differentiation of adipose stem cells, and that activation of this pathway by FGF2 may explain why hbASCs show greater proliferation and adipogenic differentiation than haASCs and htASCs.


Assuntos
Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Abdome/patologia , Adipócitos/metabolismo , Mama/patologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Gordura Subcutânea/citologia , Gordura Subcutânea/metabolismo , Coxa da Perna/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA