RESUMO
Dead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-ß-D-glucuronide, oroxylin A-7-O-ß-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.
Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Scutellaria baicalensis/genética , Scutellaria baicalensis/química , Glucuronídeos , Multiômica , Flavonoides/químicaRESUMO
This method afforded aromatic carbonyl compounds under TBHP via selective oxidative cleavage of the C-C bond in α,ß-epoxy ketones. Aromatic acid came from the aroyl section, and aromatic aldehyde came from the other aromatic group. TBHP acted as a free radical initiator and oxidant. The reaction within the solvent went through a ring-opening addition, cleavage of the C-C bond in the ethylene oxide section, and oxidation, affording the target compounds in moderate to good yields. The HPLC yield of aromatic aldehyde was up to 91%. The HPLC yield of aromatic acid was up to 99%. The reaction under solvent-free conditions gave two kinds of aromatic acids coming from different moieties of α,ß-epoxy ketone via the further oxidation of aromatic aldehyde. The substituent effect was discussed, and the reaction mechanism was proposed. This method allowed the reaction to occur in a simple system metal-free.
RESUMO
Wheat (Triticum aestivum L.) is one of the most important crops cultivated worldwide. Identifying the complete transcriptome of wheat grain could serve as foundation for further study of wheat seed development. However, the relatively large size and the polyploid complexity of the genome have been substantial barriers to molecular genetics and transcriptome analysis of wheat. Alternatively, RNA sequencing has provided some useful information about wheat genes. However, because of the large number of short reads generated by RNA sequencing, factors that are crucial to transcriptome assembly, including software, candidate parameters and assembly strategies, need to be optimized and evaluated for wheat data. In the present study, four cDNA libraries associated with wheat grain development were constructed and sequenced. A total of 14.17 Gb of high-quality reads were obtained and used to assess different assembly strategies. The most successful approach was to filter the reads with Q30 prior to de novo assembly using Trinity, merge the assembled contigs with genes available in wheat cDNA reference data sets, and combine the resulting assembly with an assembly from a reference-based strategy. Using this approach, a relatively accurate and nearly complete transcriptome associated with wheat grain development was obtained, suggesting that this is an effective strategy for generation of a high-quality transcriptome from RNA sequencing data.