Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Front Med ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743133

RESUMO

lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload-induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38728074

RESUMO

A novel plant-beneficial bacterium strain, designated as JGH33T, which inhibited Peronophythora litchii sporangia germination, was isolated on Reasoner's 2A medium from a litchi rhizosphere soil sample collected in Gaozhou City, Guangdong Province, PR China. Cells of strain JGH33T were Gram-stain-positive, aerobic, non-motile, bent rods. The strain grew optimally at 30-37 °C and pH 6.0-8.0. Sequence similarity analysis based on 16S rRNA genes indicated that strain JGH33T exhibited highest sequence similarity to Sinomonas albida LC13T (99.2 %). The genomic DNA G+C content of the isolate was 69.1 mol%. The genome of JGH33T was 4.7 Mbp in size with the average nucleotide identity value of 83.45 % to the most related reference strains, which is lower than the species delineation threshold of 95 %. The digital DNA-DNA hybridization of the isolate resulted in a relatedness value of 24.9 % with its closest neighbour. The predominant respiratory quinone of JGH33T was MK-9(H2). The major fatty acids were C15 : 0 anteiso (43.4 %), C16 : 0 iso (19.1 %) and C17 : 0 anteiso (19.3 %), and the featured component was C18 : 3 ω6c (1.01 %). The polar lipid composition of strain JGH33T included diphosphatidylglycerol, phosphatidylglycerol, dimannosylglyceride, phosphatidylinositol and glycolipids. On the basis of polyphasic taxonomy analyses data, strain JGH33T represents a novel species of the genus Sinomonas, for which the name Sinomonas terricola sp. nov. is proposed, with JGH33T (=JCM 35868T=GDMCC 1.3730T) as the type strain.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Litchi , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2 , China , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Litchi/microbiologia , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfolipídeos/análise
3.
Diabetol Metab Syndr ; 16(1): 105, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764083

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is a highly prevalent disease and poses a significant risk to the health of pregnant women. Abdominal adipose tissue (AT) contributes to insulin resistance (IR) associated with GDM. However, the underlying mechanisms remain unclear. METHODS: In this study, we developed a mouse model of GDM by subjecting mice to a high-fat diet. We collected adipose-derived stem cells (ADSCs) from the abdominal and inguinal regions and examined their role in inducing IR in normal tissues through the secretion of small extracellular vesicles (sEVs). The sEVs derived from ADSCs isolated from GDM mice (ADSC/GDM) were found to inhibit cell viability and insulin sensitivity in AML12, a normal mouse liver cell line. RESULTS: Through proteomic analysis, we identified high levels of the thrombospondin 1 (Thbs1) protein in the sEVs derived from ADSC/GDM. Subsequent overexpression of Thbs1 protein in AML12 cells demonstrated similar IR as observed with ADSC/GDM-derived sEVs. Mechanistically, the Thbs1 protein within the sEVs interacted with CD36 and transforming growth factor (Tgf) ß receptors in AML12 cells, leading to the activation of Tgfß/Smad2 signaling. Furthermore, the administration of LSKL, an antagonistic peptide targeting Thbs1, suppressed Thbs1 expression in ADSC/GDM-derived sEVs, thereby restoring insulin sensitivity in AML12 cells and GDM mice in vivo. CONCLUSIONS: These findings shed light on the intercellular transmission mechanism through which ADSCs influence hepatic insulin sensitivity and underscore the therapeutic potential of targeting the Thbs1 protein within sEVs.

4.
Radiother Oncol ; 196: 110287, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636709

RESUMO

BACKGROUND: Locally advanced nasopharyngeal cancer (NPC) patients undergoing radiotherapy are at risk of treatment failure, particularly locoregional recurrence. To optimize the individual radiation dose, we hypothesize that the genomic adjusted radiation dose (GARD) can be used to correlate with locoregional control. METHODS: A total of 92 patients with American Joint Committee on Cancer / International Union Against Cancer stage III to stage IVB recruited in a randomized phase III trial were assessed (NPC-0501) (NCT00379262). Patients were treated with concurrent chemo-radiotherapy plus (neo) adjuvant chemotherapy. The primary endpoint is locoregional failure free rate (LRFFR). RESULTS: Despite the homogenous physical radiation dose prescribed (Median: 70 Gy, range 66-76 Gy), there was a wide range of GARD values (median: 50.7, range 31.1-67.8) in this cohort. In multivariable analysis, a GARD threshold (GARDT) of 45 was independently associated with LRFFR (p = 0.008). By evaluating the physical dose required to achieve the GARDT (RxRSI), three distinct clinical subgroups were identified: (1) radiosensitive tumors that RxRSI at dose < 66 Gy (N = 59, 64.1 %) (b) moderately radiosensitive tumors that RxRSI dose within the current standard of care range (66-74 Gy) (N = 20, 21.7 %), (c) radioresistant tumors that need a significant dose escalation above the current standard of care (>74 Gy) (N = 13, 14.1 %). CONCLUSION: GARD is independently associated with locoregional control in radiotherapy-treated NPC patients from a Phase 3 clinical trial. GARD may be a potential framework to personalize radiotherapy dose for NPC patients.

5.
Mol Ther ; 32(5): 1578-1594, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475992

RESUMO

Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.


Assuntos
Proteínas Argonautas , Modelos Animais de Doenças , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Repressoras , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Camundongos , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Remodelação Ventricular , Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regulação da Expressão Gênica , Masculino , Dependovirus/genética , Transcrição Gênica
6.
Biomolecules ; 14(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38540749

RESUMO

Hyperglycemia in pregnancy (HIP) is linked to fetoplacental endothelial dysfunction, which might be a result of hyperglycemia. Hyperglycemia is associated with cell senescence; however, the role and mechanism of high glucose and cell senescence in HIP endothelial cell failure are largely unknown. Our study discovered that human umbilical vein endothelial cells (HUVECs) obtained from HIP pregnant women exhibit excessive senescence, with significantly elevated expression of senescence markers senescence-associated beta-galactosidase (SA-ß-gal), p16, p21, and p53. Subsequently, we found that exposing primary HUVECs and cell lines to high glucose resulted in an increase in the synthesis of these senescence indicators, similar to what had been observed in pregnant women with HIP. A replicate senescence model and stress-induced premature senescence (SIPS) model showed higher amounts of vascular damage indicators, including von Willebrand factor (vWF), chemotactic C-C motif chemokine ligand 2 (CCL2), intercellular adhesion molecule 1 (ICAM-1), along with the anti-apoptotic protein BCL2. However, lower expressions of the pro-apoptotic component BAX, in addition to defective proliferation and tubulogenesis, were seen. Further studies indicated that hyperglycemia can not only induce these alterations in HUVECs but also exacerbate the aforementioned changes in both aging HUVECs. The experiments outlined above have also been validated in pregnant women with HIP. Collectively, these data suggest that exposure to high glucose accelerates cell senescence-mediated vein endothelial cell dysfunction, including excessive inflammation, cell adhesion, impaired angiogenesis, and cell proliferation possibly contributing to pregnancy complications and adverse pregnancy outcomes.


Assuntos
Senescência Celular , Hiperglicemia , Humanos , Feminino , Gravidez , Células Endoteliais da Veia Umbilical Humana , Envelhecimento , Glucose/farmacologia
7.
Circ Res ; 134(4): 425-441, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38299365

RESUMO

BACKGROUND: Human cardiac long noncoding RNA (lncRNA) profiles in patients with dilated cardiomyopathy (DCM) were previously analyzed, and the long noncoding RNA CHKB (choline kinase beta) divergent transcript (CHKB-DT) levels were found to be mostly downregulated in the heart. In this study, the function of CHKB-DT in DCM was determined. METHODS: Long noncoding RNA expression levels in the human heart tissues were measured via quantitative reverse transcription-polymerase chain reaction and in situ hybridization assays. A CHKB-DT heterozygous or homozygous knockout mouse model was generated using the clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 system, and the adeno-associated virus with a cardiac-specific promoter was used to deliver the RNA in vivo. Sarcomere shortening was performed to assess the primary cardiomyocyte contractility. The Seahorse XF cell mitochondrial stress test was performed to determine the energy metabolism and ATP production. Furthermore, the underlying mechanisms were explored using quantitative proteomics, ribosome profiling, RNA antisense purification assays, mass spectrometry, RNA pull-down, luciferase assay, RNA-fluorescence in situ hybridization, and Western blotting. RESULTS: CHKB-DT levels were remarkably decreased in patients with DCM and mice with transverse aortic constriction-induced heart failure. Heterozygous knockout of CHKB-DT in cardiomyocytes caused cardiac dilation and dysfunction and reduced the contractility of primary cardiomyocytes. Moreover, CHKB-DT heterozygous knockout impaired mitochondrial function and decreased ATP production as well as cardiac energy metabolism. Mechanistically, ALDH2 (aldehyde dehydrogenase 2) was a direct target of CHKB-DT. CHKB-DT physically interacted with the mRNA of ALDH2 and fused in sarcoma (FUS) through the GGUG motif. CHKB-DT knockdown aggravated ALDH2 mRNA degradation and 4-HNE (4-hydroxy-2-nonenal) production, whereas overexpression of CHKB-DT reversed these molecular changes. Furthermore, restoring ALDH2 expression in CHKB-DT+/- mice alleviated cardiac dilation and dysfunction. CONCLUSIONS: CHKB-DT is significantly downregulated in DCM. CHKB-DT acts as an energy metabolism-associated long noncoding RNA and represents a promising therapeutic target against DCM.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Cardiomiopatia Dilatada , RNA Longo não Codificante , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Regulação para Baixo , Hibridização in Situ Fluorescente , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Diabetol Metab Syndr ; 16(1): 16, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217048

RESUMO

OBJECTIVE: This study aimed to compare and analyze the expression and significance of the GRP78 protein in cochlear cell injury induced by a high glucose and high-fat diet in obese and diabetic rats. METHODS: Male SD rats were randomly divided into two groups: normal (NC) and high-fat (HF) groups. The NC group was fed a standard diet for eight weeks, while the HF group received a high-glucose, high-fat diet. The HF group was further categorized into the obesity group (OB group) and the type II diabetes mellitus group (T2DM group). To induce a type II diabetes mellitus (T2DM) model, the T2DM group received an intraperitoneal injection of a small dose of STZ (45 mg/kg). After four weeks on the original diet, body weight, blood glucose, blood lipid levels, and auditory brainstem response (ABR) thresholds were measured. The cochlea was dissected, and its morphology was observed using HE staining. Immunohistochemistry and western blotting were utilized to examine the expression level of the GRP78 protein in the cochlea. RESULTS: (1) The ABR threshold demonstrated a statistically significant difference between the T2DM group and the OB group (P < 0.05), as well as between the OB group and the NC group (P < 0.05). (2) Based on morphological comparisons from HE-stained sections, the T2DM group exhibited the most significant alterations in the number of cells in the spiral ganglion, the organ of Corti, and the stria vascularis of the cochlea. (3) The expression level of the GRP78 protein in the cochlea was higher in the T2DM group compared to the OB group (P < 0.05) and higher in the OB group compared to the NC group (P < 0.05). CONCLUSION: The findings indicate that the GRP78 protein plays a role in hearing loss caused by T2DM and hyperlipidemia. Moreover, T2DM is more likely than hyperlipidemia to be associated with hearing impairment.

9.
Photodiagnosis Photodyn Ther ; 45: 103924, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061450

RESUMO

SIGNIFICANCE: ALA-PDT effectively treats Vulvar lichen sclerosus et atrophicus (VLSA), but it requires multiple repetitions for satisfactory results. To enhance efficacy, we employed a combination of high-frequency electrocautery therapy and ALA-PDT in treating seven VLSA patients. APPROACH: Lesions and leukoplakia in the seven women with VLSA were removed using a high-frequency generator. PDT was administered after wound healing, and it was repeated six times. Follow-up assessments were carried out at 1, 3, and 6 months to evaluate the severity of pruritus and investigate lesion repigmentation. RESULTS: Following the combined therapy, the disappearance of pruritus was observed in all patients, and normal color and thickness were restored to their skin. Two patients reported mild pruritus with a score of 2 one month after treatment, which persisted until the 6-month follow-up, while the remaining patients remained free from pruritus. No recurrence of skin lesions was observed in any of the patients. CONCLUSIONS: The combined therapy for the treatment of VLSA is found to be convenient, effective, and easily promotable.


Assuntos
Líquen Escleroso e Atrófico , Fotoquimioterapia , Líquen Escleroso Vulvar , Humanos , Feminino , Líquen Escleroso Vulvar/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Líquen Escleroso e Atrófico/tratamento farmacológico , Prurido/tratamento farmacológico , Eletrocoagulação
10.
Adv Mater ; 36(7): e2306376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944993

RESUMO

Designing an effective treatment strategy to combat oral diseases caused by complex polymicrobial biofilms remains a great challenge. Herein, a series of metal-phenolic network with Pd nanoparticle nodes using polyphenols as stabilizers and reducing agents is constructed. Among them, sulfonated lignin-Pd (SLS-Pd) with ultrafine size palladium nanoparticles and broadband near infrared absorption exhibit excellent oxidase-like activity and stable photothermal effect. In vitro experiments demonstrate that the superoxide radical generated by SLS-Pd oxidase-like activity exhibits selective antibacterial effects, while its photothermal effect induced hyperthermia exhibits potent antifungal properties. This difference is further elucidated by RNA-sequencing analysis and all-atom simulation. Moreover, the SLS-Pd-mediated synergistic antimicrobial system exhibits remarkable efficacy in combating various biofilms and polymicrobial biofilms. By establishing a root canal model and an oropharyngeal candidiasis model, the feasibility of the synergistic antimicrobial system in treating oral biofilm-related infections is further validated. This system provides a promising therapeutic approach for polymicrobial biofilm-associated infections in the oral cavity.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas Metálicas/uso terapêutico , Paládio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes
11.
Circulation ; 149(14): 1102-1120, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38126189

RESUMO

BACKGROUND: Diabetes is associated with cardiovascular complications. microRNAs translocate into subcellular organelles to modify genes involved in diabetic cardiomyopathy. However, functional properties of subcellular AGO2 (Argonaute2), a core member of miRNA machinery, remain elusive. METHODS: We elucidated the function and mechanism of subcellular localized AGO2 on mouse models for diabetes and diabetic cardiomyopathy. Recombinant adeno-associated virus type 9 was used to deliver AGO2 to mice through the tail vein. Cardiac structure and functions were assessed by echocardiography and catheter manometer system. RESULTS: AGO2 was decreased in mitochondria of diabetic cardiomyocytes. Overexpression of mitochondrial AGO2 attenuated diabetes-induced cardiac dysfunction. AGO2 recruited TUFM, a mitochondria translation elongation factor, to activate translation of electron transport chain subunits and decrease reactive oxygen species. Malonylation, a posttranslational modification of AGO2, reduced the importing of AGO2 into mitochondria in diabetic cardiomyopathy. AGO2 malonylation was regulated by a cytoplasmic-localized short isoform of SIRT3 through a previously unknown demalonylase function. CONCLUSIONS: Our findings reveal that the SIRT3-AGO2-CYTB axis links glucotoxicity to cardiac electron transport chain imbalance, providing new mechanistic insights and the basis to develop mitochondria targeting therapies for diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , MicroRNAs , Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Genes Mitocondriais , Mitocôndrias/genética , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Diabetes Mellitus/metabolismo
12.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069393

RESUMO

Members of the family Caulimoviridae contain abundant endogenous pararetroviral sequences (EPRVs) integrated into the host genome. Banana streak virus (BSV), a member of the genus Badnavirus in this family, has two distinct badnaviral integrated sequences, endogenous BSV (eBSV) and banana endogenous badnavirus sequences (BEVs). BEVs are distributed widely across the genomes of different genotypes of bananas. To clarify the distribution and location of BEVs in different genotypes of bananas and their coevolutionary relationship with bananas and BSVs, BEVs and BSVs were identified in 102 collected banana samples, and a total of 327 BEVs were obtained and categorized into 26 BEVs species with different detection rates. However, the majority of BEVs were found in Clade II, and a few were clustered in Clade I. Additionally, BEVs and BSVs shared five common conserved motifs. However, BEVs had two unique amino acids, methionine and lysine, which differed from BSVs. BEVs were distributed unequally on most of chromosomes and formed hotspots. Interestingly, a colinear relationship of BEVs was found between AA and BB, as well as AA and SS genotypes of bananas. Notably, the chromosome integration time of different BEVs varied. Based on our findings, we propose that the coevolution of bananas and BSVs is driven by BSV Driving Force (BDF), a complex interaction between BSVs, eBSVs, and BEVs. This study provides the first clarification of the relationship between BEVs and the coevolution of BSVs and bananas in China.


Assuntos
Badnavirus , Musa , Musa/genética , Badnavirus/genética , Genoma de Planta , Genótipo
13.
Curr Mol Med ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37921187

RESUMO

BACKGROUND: As a complex of natural plant compounds, tanshinone is renowned for its remarkable antioxidant properties. However, the potential impact of tanshinone on melanocyte pigmentation regulation has yet to be elucidated. This study aimed to explore the protective effects of tanshinone I (T-I) and dihydrotanshinone (DHT) on melanogenesis by modulating nuclear factor E2-related factor 2 (Nrf2) signaling and antioxidant defenses in human epidermal melanocyte (HEM) cells. METHODS: HEM cells and Nrf2 knockdown HEM cells were subjected to ultraviolet A (UVA) and treated with T-I and/or DHT. Then, the anti-melanogenic properties of T-I and DHT were examined by assessing tyrosinase activity, melanogenesis-related proteins, and melanin content in UVA-irradiated HEM cells. Furthermore, the antioxidant activities of T-I and DHT were evaluated by assessing oxidant formation and modulation of Nrf2-related antioxidant defenses, including reactive oxygen species (ROS), glutathione (GSH) content, and the activity and expression of antioxidant enzymes, such as catalase (CAT), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD). RESULTS: Our findings revealed that T-I and DHT diminished melanogenesis in UVAirradiated HEM cells, activated Nrf2-antioxidant response element signaling, and enhanced antioxidant defenses in the irradiated cells. Furthermore, Nrf2 knockdown by shRNA abolished the anti-melanogenesis effects of T-I and DHT on HEM cells against oxidative damage. CONCLUSION: These results suggest that T-I and DHT inhibit UVA-induced melanogenesis in HEM cells, possibly through redox mechanisms involving Nrf2 signaling activation and increased antioxidant defenses. This indicates that T-I and DHT have potential as whitening agents in cosmetics and medical treatments for hyperpigmentation disorders.

14.
Front Cell Infect Microbiol ; 13: 1229859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662006

RESUMO

Suillus luteus is a widespread edible ectomycorrhizal fungus that holds significant importance in both ecological and economic value. Mycoviruses are ubiquitous infectious agents hosted in different fungi, with some known to exert beneficial or detrimental effects on their hosts. However, mycoviruses hosted in ectomycorrhizal fungi remain poorly studied. To address this gap in knowledge, we employed next-generation sequencing (NGS) to investigate the virome of S. luteus. Using BLASTp analysis and phylogenetic tree construction, we identified 33 mycovirus species, with over half of them belonging to the phylum Lenarviricota, and 29 of these viruses were novel. These mycoviruses were further grouped into 11 lineages, with the discovery of a new negative-sense single-stranded RNA viral family in the order Bunyavirales. In addition, our findings suggest the occurrence of cross-species transmission (CST) between the fungus and ticks, shedding light on potential evolutionary events that have shaped the viral community in different hosts. This study is not only the first study to characterize mycoviruses in S. luteus but highlights the enormous diversity of mycoviruses and their implications for virus evolution.


Assuntos
Basidiomycota , Micovírus , Basidiomycota/virologia , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Metagenômica , Evolução Biológica , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação
15.
J Cancer Res Clin Oncol ; 149(13): 11619-11634, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401939

RESUMO

OBJECTIVE: SMARCD1 is a part of the SWI/SNF chromatin remodeling complex family, which consists of transcription factors that are implicated in various types of cancer. Examining SMARCD1 expression in human cancers can provide valuable insights into the development and progression of skin cutaneous melanoma (SKCM). METHODS: Our study comprehensively examined the association between SMARCD1 expression and numerous factors, including prognosis, tumor microenvironment (TME), immune infiltration, tumor mutational burden (TMB), and microsatellite instability (MSI) in SKCM. Then we utilized immunohistochemical staining to measure the SMARCD1 expression in both SKCM tissues and normal skin tissues. Furthermore, we conducted in vitro experimentation to evaluate the effects of SMARCD1 knockdown on SKCM cells. RESULTS: We found that aberrant expression of SMARCD1 across 16 cancers was strongly correlated with overall survival (OS) and progression-free survival (PFS). In addition, our research revealed that SMARCD1 expression is associated with multiple factors in different types of cancer, including immune infiltration, TME, immune-related genes, MSI, TMB, and sensitivity to anti-cancer drugs. SMARCD1 is likely involved in various SKCM signaling pathways and biological processes. Additionally, our research revealed that an SMARCD1-based risk factor model accurately predicted OS in SKCM patients. Furthermore, the downregulation of SMARCD1 expression demonstrated a significant inhibition of SKCM cell proliferation and migration, as well as an increase in apoptosis and cell cycle arrest. CONCLUSION: We conclude that SMARCD1 is a promising diagnostic, prognostic, and therapeutic biomarker for SKCM, and its expression has significant clinical implications for the development of novel treatment strategies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Biomarcadores , Apoptose , Microambiente Tumoral/genética , Proteínas Cromossômicas não Histona , Melanoma Maligno Cutâneo
16.
Adv Mater ; 35(31): e2301664, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37279172

RESUMO

Due to the emergence of drug resistance in bacteria and biofilm protection, achieving a satisfactory therapeutic effect for bacteria-infected open wounds with conventional measures is problematic. Here, a photothermal cascade nano-reactor (CPNC@GOx-Fe2+ ) is constructed through a supramolecular strategy through hydrogen bonding and coordination interactions between chitosan-modified palladium nano-cube (CPNC), glucose oxidase (GOx), and ferrous iron (Fe2+ ). CPNC@GOx-Fe2+ exhibits excellent photothermal effects and powers the GOx-assisted cascade reaction to generate hydroxyl radicals, enabling photothermal and chemodynamic combination therapy against bacteria and biofilms. Further proteomics, metabolomics, and all-atom simulation results indicate that the damage of the hydroxyl radical to the function and structure of the cell membrane and the thermal effect enhance the fluidity and inhomogeneity of the bacterial cell membrane, resulting in the synergistic antibacterial effect. In the biofilm-associated tooth extraction wound model, the hydroxyl radical generated from the cascade reaction process can initiate the radical polymerization process to form a hydrogel in situ for wound protection. In vivo experiments confirm that synergistic antibacterial and wound protection can accelerate the healing of infected tooth-extraction wounds without affecting the oral commensal microbiota. This study provides a way to propose a multifunctional supramolecular system for the treatment of open wound infection.


Assuntos
Radical Hidroxila , Extração Dentária , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Membrana Celular , Glucose Oxidase , Hidrogéis
17.
Signal Transduct Target Ther ; 8(1): 226, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291118

RESUMO

Dilated cardiomyopathy (DCM) is the leading cause of heart transplantation. By microRNA (miRNA) array, a Kaposi's sarcoma-associated herpes virus (KSHV)-encoded miRNA, kshv-miR-K12-1-5p, was detected in patients with DCM. The KSHV DNA load and kshv-miR-K12-1-5p level in plasma from 696 patients with DCM were measured and these patients were followed-up. Increased KSHV seropositivity and quantitative titers were found in the patients with DCM compared with the non-DCM group (22.0% versus 9.1%, p < 0.05; 168 versus 14 copies/mL plasma, p < 0.05). The risk of the individual end point of death from cardiovascular causes or heart transplantation was increased among DCM patients with the KSHV DNA seropositivity during follow-up (adjusted hazard ratio 1.38, 95% confidence interval 1.01-1.90; p < 0.05). In heart tissues, the KSHV DNA load was also increased in the heart from patients with DCM in comparison with healthy donors (1016 versus 29 copies/105 cells, p < 0.05). The KSHV and kshv-miR-K12-1-5p in DCM hearts were detected using immunofluorescence and fluorescence staining in situ hybridization. KSHV itself was exclusively detectable in CD31-positive endothelium, while kshv-miR-K12-1-5p could be detected in both endothelium and cardiomyocytes. Moreover, kshv-miR-K12-1-5p released by KSHV-infected cardiac endothelium could disrupt the type I interferon signaling pathway in cardiomyocytes. Two models of kshv-miR-K12-1-5p overexpression (agomiR and recombinant adeno-associated virus) were used to explore the roles of KSHV-encoded miRNA in vivo. The kshv-miR-K12-1-5p aggravated known cardiotropic viruses-induced cardiac dysfunction and inflammatory infiltration. In conclusion, KSHV infection was a risk factor for DCM, providing developmental insights of DCM involving virus and its miRNA ( https://clinicaltrials.gov . Unique identifier: NCT03461107).


Assuntos
Cardiomiopatia Dilatada , Herpesvirus Humano 8 , MicroRNAs , Sarcoma de Kaposi , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Cardiomiopatia Dilatada/genética , Transdução de Sinais
18.
Front Microbiol ; 14: 1193714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275129

RESUMO

Fusarium oxysporum f. sp. cubense (Foc) is a devastating plant pathogen that caused a great financial loss in the banana's source area. Metatranscriptomic analysis was used to determine the diversity of mycoviruses in 246 isolates of F. oxysporum f. sp. cubense. Partial or nearly complete genomes of 20 mycoviruses were obtained by BLASTp analysis of RNA sequences using the NCBI database. These 20 viruses were grouped into five distinct lineages, namely Botourmiaviridae, Endornaviridae, Mitoviridae, Mymonaviridae, Partitiviridae, and two non-classified mycoviruses lineages. To date, there is no report of the presence of mycoviruses in this pathogen. In this study, we demonstrate the presence of mycoviruses isolated from Foc. These findings enhance our overall knowledge of viral diversity and taxonomy in Foc. Further characterization of these mycoviruses is warranted, especially in terms of exploring these novel mycoviruses for innovative biocontrol of banana Fusarium wilt disease.

19.
J Med Chem ; 66(13): 8993-9005, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37370231

RESUMO

The safety risks of gadolinium (Gd3+)-based contrast agents (GBCAs) arise from their inevitable leakage of Gd3+, and the pursuit of more stable GBCAs for magnetic resonance imaging (MRI) has drawn increasing attention. Yet, Gd-EOB-DTPA and Gd-BOPTA are the only two authorized GBCAs for liver diagnosis in spite of their weak stability. In this study, one of the pendent arms of the most inert commercial Gd-DOTA was decorated with phenyl moieties, in which obvious enhancements of both kinetic and thermodynamic stability were achieved. Gd-L4 with a para-substituted OBn group was observed with ready hepatocellular uptake, with significant contrast provided in diagnosing orthotopic hepatocellular carcinoma, and its hepatobiliary secretion accounted for more than 50% of the injection dose in mice. In this study, Gd-L4 was found with comparable performance in liver MRI diagnosis to that of commercial Gd-EOB-DTPA and was thus deemed as an ideal candidate for further clinical applications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos
20.
Arch Virol ; 168(6): 162, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195309

RESUMO

A novel positive single-stranded RNA virus, Pleurotus ostreatus deltaflexivirus 1 (PoDFV1), was isolated from the edible fungus Pleurotus ostreatus strain ZP6. The complete genome of PoDFV1 is 7706 nucleotides (nt) long and contains a short poly(A) tail. PoDFV1 was predicted to contain one large open reading frame (ORF1) and three small downstream ORFs (ORFs 2-4). ORF1 encodes a putative replication-associated polyprotein of 1979 amino acids (aa) containing three conserved domains - viral RNA methyltransferase (Mtr), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp) - which are common to all deltaflexiviruses. ORFs 2-4 encode three small hypothetical proteins (15-20 kDa) without conserved domains or known biological functions. Sequence alignments and phylogenetic analysis suggested that PoDFV1 is a member of a new species in the genus Deltaflexivirus (family Deltaflexiviridae, order Tymovirales). To our knowledge, this is the first report of a deltaflexivirus infecting P. ostreatus.


Assuntos
Micovírus , Pleurotus , Vírus de RNA , Pleurotus/genética , Filogenia , Proteínas Virais/genética , Proteínas Virais/química , Genoma Viral , Vírus de RNA/genética , RNA Viral/genética , Vírus de RNA de Cadeia Positiva/genética , Fases de Leitura Aberta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA