Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
2.
Org Biomol Chem ; 22(14): 2813-2818, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511276

RESUMO

Pyrroindomycins (PYRs) represent the only spirotetramate natural products discovered in nature, and possess potent activities against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Their unique structure and impressive biological activities make them attractive targets for synthesis and biosynthesis; however, the discovery and generation of new PYRs remains challenging. To date, only the initial components A and B have been reported. Herein, we report a mutasynthesis approach for the generation of nine new PYRs with varying acyl modifications on their deoxy-trisaccharide moieties. This was achieved by blocking the formation of the acyl group 1,8-dihydropyrrolo[2,3-b]indole (DHPI) via gene pyrK1 inactivation and supplying chemical acyl precursors. The gene pyrK1 encodes a DUF1864 family protein that probably catalyzes the oxidative transformation of L-tryptophan to DHPI, and its deletion results in the abolishment of DHPI-containing PYRs and the accumulation of three new PYRs either without acyl modification or with DHPI replaced by benzoic acid and pyrrole-2-carboxylic acid. Capitalizing on the capacity of the ΔpyrK1 mutant to produce new PYRs, we have successfully developed a mutasynthesis strategy for the generation of six novel PYR analogs with various aromatic acid modifications on their deoxy-trisaccharide moieties, showcasing the potential for generating structurally diverse PYRs. Overall, this research contributes significantly to understanding the biosynthesis of PYRs and offers valuable perspectives on their structural diversity.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Trissacarídeos
3.
Drug Des Devel Ther ; 18: 747-766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495630

RESUMO

Purpose: Type 2 diabetes mellitus (T2DM) is associated with reduced insulin uptake and glucose metabolic capacity. Potentilla discolor Bunge (PDB) has been used to treat T2DM; however, the fundamental biological mechanisms remain unclear. This study aimed to understand the active ingredients, potential targets, and underlying mechanisms through which PDB treats T2DM. Methods: Components and action targets were predicted using network pharmacology and molecular docking analyses. PDB extracts were prepared and validated through pharmacological intervention in a Cg>InRK1409A diabetes Drosophila model. Network pharmacology and molecular docking analyses were used to identify the key components and core targets of PDB in the treatment of T2DM, which were subsequently verified in animal experiments. Results: Network pharmacology analysis revealed five effective compounds made up of 107 T2DM-related therapeutic targets and seven protein-protein interaction network core molecules. Molecular docking results showed that quercetin has a strong preference for interleukin-1 beta (IL1B), IL6, RAC-alpha serine/threonine-protein kinase 1 (AKT1), and cellular tumor antigen p53; kaempferol exhibited superior binding to tumor necrosis factor and AKT1; ß-sitosterol demonstrated pronounced binding to Caspase-3 (CASP3). High-performance liquid chromatography data quantified quercetin, kaempferol, and ß-sitosterol at proportions of 0.030%, 0.025%, and 0.076%, respectively. The animal experiments revealed that PDB had no effect on the development, viability, or fertility of Drosophila and it ameliorated glycolipid metabolism disorders in the diabetes Cg>InRK1409A fly. Furthermore, PDB improved the body size and weight of Drosophila, suggesting its potential to alleviate insulin resistance. Moreover, PDB improved Akt phosphorylation and suppressed CASP3 activity to improve insulin resistance in Drosophila with T2DM. Conclusion: Our findings suggest that PDB ameliorates diabetes metabolism disorders in the fly model by enhancing Akt activity and suppressing CASP3 expression. This will facilitate the development of key drug targets and a potential therapeutic strategy for the clinical treatment of T2DM and related metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Potentilla , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Caspase 3 , Quempferóis , Drosophila , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Quercetina
4.
Nat Commun ; 15(1): 2561, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519517

RESUMO

Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications.


Assuntos
Anti-Infecciosos , Cárie Dentária , Ácidos Nucleicos , Humanos , Cristalização , Anti-Infecciosos/farmacologia
5.
J Chromatogr A ; 1713: 464508, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38006661

RESUMO

As an excellent fusion tag for expressing heterologous proteins, yeast SUMO (small ubiquitin-related modifier) has unique advantages such as improving solubility, promoting stability, and reducing degradation, but it lacks a simple and rapid purification method. Camelid single-domain antibodies (VHHs or nanobodies) show great promise as an efficient tool in analytical application. In this study, VHHs against SUMO protein were isolated for the first time using biopanning of an immune camelid nanobody library. Among these nanobodies, VS2 demonstrated a high expression level (1.12 g L - 1), and a high affinity for SUMO (2.26 nM). Meanwhile, VHHs were coupled to agarose resins by cysteine at the C-terminal to form affinity chromatography resins. The VS2 resin showed excellent specificity and a dynamic binding capacity for SUMO, SUMO-DsbA (disulfide oxidoreductase) and SUMO-SAM (S-adenosylmethionine synthetase) were 2.41 mg/mL resin, 7.57 mg/mL resin and 16.23 mg/mL resin, respectively. Furthermore, the VS2 resin enabled one-step purification of SUMO-fusions [SUMO-Fc (human IgG1-Fc fragment), SUMO-IGF1 (human insulin-like growth factor 1), SUMO-FGF21 (human fibroblast growth factor 21), SUMO-G-CSF (human Granulocyte colony-stimulating factor), SUMO-PDGF (human platelet-derived growth factor) and SUMO-PAS200 (conformationally disordered polypeptide chains with expanded hydrodynamic volume comprising the small residues Pro, Ala-and Ser)], and maintained binding capacity and selectivity over 25 purification cycles, each including 15 min of cleaning-in-place with 0.1 M NaOH. This study demonstrated that the VS2 resin was a useful tool at the laboratory scale for one-step purification of various SUMO fusions from complex mixtures.


Assuntos
Anticorpos de Domínio Único , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Humanos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Anticorpos de Domínio Único/metabolismo , Proteína SUMO-1 , Peptídeos , Saccharomyces cerevisiae/metabolismo , Cromatografia de Afinidade/métodos , Proteínas Recombinantes de Fusão
6.
Front Endocrinol (Lausanne) ; 14: 1190827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053727

RESUMO

Objective: Intestinal flora homeostasis in rats with type 2 diabetes mellitus (T2DM) was evaluated to explore the effects of total Astragalus saponins (TAS) on hepatic insulin resistance (IR). Methods: Six-week-old male Sprague-Dawley rats were fed high-fat and high-sugar diet for 4 weeks and intraperitoneally injected with streptozotocin to induce T2DM, and they were then randomly divided into control, model, metformin, and TAS groups. Stool, serum, colon, and liver samples were collected after 8 weeks of drug administration for relevant analyses. Results: TAS reduced fasting blood glucose, 2-hour postprandial blood glucose, area under the curve of oral glucose tolerance test, glycated serum protein, homeostasis model assessment of insulin resistance, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels in T2DM rats but increased insulin, C-peptide, and high-density lipoprotein cholesterol levels. Moreover, TAS improved the morphology and structure of liver and colon tissues and improved the composition of the intestinal microbiome and bacterial community structure at different taxonomic levels. In addition, TAS increased the protein expression of hepatic IRS-1, PI3K, PDK1, and p-AKT and decreased the protein expression of p-GSK-3ß. Meanwhile, TAS increased the mRNA expression of liver PDK1, PI3K, and GS and decreased the mRNA expression of GSK-3ß. Conclusion: TAS can ameliorate T2DM-related abnormal glucose and blood lipid metabolism, intestinal dysbiosis, and IR.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Saponinas , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Saponinas/farmacologia , Saponinas/metabolismo , Disbiose/tratamento farmacológico , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Colesterol/metabolismo
7.
Heliyon ; 9(11): e21076, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928009

RESUMO

The statistical properties of the international trade networks of all commodities as a whole have been extensively studied. However, the international trade networks of individual commodities often behave differently. Due to the importance of pesticides in agricultural production and food security, we investigated the evolving community structure in the international pesticide trade networks (iPTNs) of five categories from 2007 to 2018. We reveal that the community structures in the undirected and directed iPTNs exhibit regional patterns. However, the regional patterns are very different for undirected and directed networks and for different categories of pesticides. Moreover, the community structure is more stable in the directed iPTNs than in the undirected iPTNs. We also extract the intrinsic community blocks for the directed international trade networks of each pesticide category. It is found that the largest intrinsic community block is the most stable, appears in every pesticide category, and contains important economies (Belgium, Germany, Spain, France, the United Kingdom, Italy, the Netherlands, and Portugal) in Europe. Other important and stable intrinsic community blocks are Canada and the United States in North America, Argentina and Brazil in South America, and Australia and New Zealand in Oceania. These results suggest that, in the international trade of pesticides, geographic distance and the complementarity of important and adjacent economies are significant factors.

8.
Hum Vaccin Immunother ; 19(3): 2275464, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37941303

RESUMO

Influenza is a significant public health threat associated with high morbidity and mortality globally. This study investigated the influenza vaccination rate (IVR) among community residents in Anhui province, China, and explored the association between participants' influenza vaccination and their key sociodemographic characteristics, perception of COVID-19 as well as COVID-19 vaccination behavior. We found that the IVR among respondents in Anhui province was 27.85% in 2020. Regression analyses revealed that males (OR = 1.41, 95% CI: 1.01 ~ 1.96), residents with above middle school education (OR = 1.88, 95% CI: 1.04 ~ 3.39), considered themselves likely to be infected with COVID-19 (OR = 1.53, 95% CI: 1.04 ~ 2.24), had received the COVID-19 vaccine (OR = 9.85, 95% CI: 3.49 ~ 27.78), did not plan to receive COVID-19 vaccine in the future (OR = 1.70, 95% CI: 1.17 ~ 2.47), and had no adverse reactions after COVID-19 vaccination (OR = 1.54, 95% CI: 1.04 ~ 2.27) were associated with a higher IVR. The acceptance of influenza vaccination was mainly associated with respondents' gender, education, perception of COVID-19, history of COVID-19 vaccination in city and countryside community residents in Anhui province.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Masculino , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Influenza Humana/prevenção & controle , Vacinas contra COVID-19 , Vacinação , China/epidemiologia , Percepção
9.
Planta ; 258(3): 65, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566145

RESUMO

MAIN CONCLUSION: Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase 1 caused a taller phenotype, promoted secondary cell wall deposition, leaf enlargement, and early flowering, and reduced chlorophyll and anthocyanin accumulation and seed enlargement phenotype in Arabidopsis. Plant height and secondary cell wall (SCW) deposition are important plant traits. Gibberellins (GAs) play important roles in regulating plant height and SCWs deposition. Gibberellin 20-oxidase (GA20ox) is an important enzyme involved in GA biosynthesis. In the present study, we identified a GA synthesis gene in Camellia oleifera. The total length of the CoGA20ox1 gene sequence was 1146 bp, encoding 381 amino acids. Transgenic plants with CoGA20ox1 had a taller phenotype; a seed enlargement phenotype; promoted SCWs deposition, leaf enlargement, and early flowering; and reduced chlorophyll and anthocyanin accumulation. Genetic analysis showed that the mutant ga20ox1-3 Arabidopsis partially rescued the phenotype of CoGA20ox1 overexpression plants. The results showed that CoGA20ox1 participates in the growth and development of C. oleifera. The morphological changes in CoGA20ox1 overexpressed plants provide a theoretical basis for further exploration of GA biosynthesis and analysis of the molecular mechanism in C. oleifera.


Assuntos
Arabidopsis , Camellia , Arabidopsis/metabolismo , Camellia/genética , Camellia/metabolismo , Antocianinas/metabolismo , Expressão Ectópica do Gene , Giberelinas/metabolismo , Plantas Geneticamente Modificadas/genética , Parede Celular/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas
10.
ACS Appl Mater Interfaces ; 15(33): 39896-39904, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555378

RESUMO

Developing polymer-based organic afterglow materials with switchable ultralong organic phosphorescence (UOP) that are insensitive to moisture remains challenging. Herein, two organic luminogens, BBCC and BBCS, were synthesized by attaching 7H-benzo[c]carbazole (BBC) to benzophenone and diphenyl sulfone. These two emitters were employed as guest molecules and doped into epoxy polymers (EPs), which were constructed by in situ polymerization to achieve polymer materials BBCC-EP and BBCS-EP. It was found that BBCC-EP and BBCS-EP films exhibited significant photoactivated UOP properties. After light irradiation, they could produce a conspicuous organic afterglow with phosphorescence quantum yields and lifetimes up to 5.35% and 1.91 s, respectively. Meanwhile, BBCS-EP also presented photochromic characteristics. Upon thermal annealing, the UOP could be turned off, and the polymer films recovered to their pristine state, showing switchable organic afterglow. In addition, BBCC-EP and BBCS-EP displayed excellent water resistance and still produced obvious UOP after soaking in water for 4 weeks. Inspired by the unique photoactivated UOP and photochromic properties, BBCC and BBCS in the mixtures of diglycidyl ether of bisphenol A (DGEBA) and 1,3-propanediamine were employed as security inks for light-controlled multilevel anticounterfeiting. This work may provide helpful guidance for developing photostimuli-responsive polymer-based organic afterglow materials, especially those with stable UOP under ambient conditions.

11.
Plants (Basel) ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447146

RESUMO

Investigations on the impact of drought stress on the reproductive growth of C. oleifera have been relatively limited compared to the extensive research conducted on its nutritional growth. To study the effects of drought stress on the growth and development of C. oleifera flower buds, we investigated the effects of drought stress on the bud anatomical structure, relative water content, relative electrical conductivity, antioxidant enzyme activity, osmoregulation substance content, and hormone contents of C. oleifera using 4-year-old potted plants ('Huaxin' cultivar) as experimental materials. We observed C. oleifera flower bud shrinkage, faded pollen colour, shortened style length, decreased relative water content, increased relative electrical conductivity, and decreased pollen germination rate under drought stress. As the stress treatment duration increased, the malondialdehyde (MDA), soluble sugar (SS), soluble protein (SP), and proline (Pro) contents, as well as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities increased. Moreover, the levels of the plant hormones indole acetic acid (IAA) and cytokinin (CTK) increased, whereas those of salicylic acid (SA) and jasmonic acid (JA) decreased, and those of abscisic acid (ABA) and gibberellin a3 (GA3) first increased and then decreased. Compared to the control group, the drought treatment group exhibited stronger antioxidant capacity, water regulation ability, and drought stress protection. These results indicate that C. oleifera is adaptable to drought-prone environments. The results of this study provide a theoretical basis for the evaluation of drought resistance in C. oleifera, as well as the development of water management strategies for cultivation.

12.
Front Plant Sci ; 14: 1181680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324670

RESUMO

Red and blue light-emitting diodes (LEDs) affect the quality of sweet potato leaves and their nutritional profile. Vines cultivated under blue LEDs had higher soluble protein contents, total phenolic compounds, flavonoids, and total antioxidant activity. Conversely, chlorophyll, soluble sugar, protein, and vitamin C contents were higher in leaves grown under red LEDs. Red and blue light increased the accumulation of 77 and 18 metabolites, respectively. Alpha-linoleic and linolenic acid metabolism were the most significantly enriched pathways based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A total of 615 genes were differentially expressed between sweet potato leaves exposed to red and blue LEDs. Among these, 510 differentially expressed genes were upregulated in leaves grown under blue light compared with those grown under red light, while the remaining 105 genes were expressed at higher levels in the latter than in the former. Among the KEGG enrichment pathways, blue light significantly induced anthocyanin and carotenoid biosynthesis structural genes. This study provides a scientific reference basis for using light to alter metabolites to improve the quality of edible sweet potato leaves.

13.
Front Plant Sci ; 14: 1126660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968351

RESUMO

Introduction: The Camellia oleifera (C. oleifera) cultivars 'Huashuo' (HS) and 'Huaxin' (HX) are new high-yielding and economically valuable cultivars that frequently encounter prolonged cold weather during the flowering period, resulting in decreased yields and quality. The flower buds of HS sometimes fail to open or open incompletely under cold stress, whereas the flower buds of HX exhibit delayed opening but the flowers and fruits rarely drop. Methods: In this study, flower buds at the same development stage of two C. oleifera cultivars were used as test materials for a combination of physiological, transcriptomic and metabolomic analyses, to unravel the different cold regulatory mechanisms between two cultivars of C. oleifera. Results and discussion: Key differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) involved in sugar metabolism, phenylpropanoid biosynthesis, and hormone signal transduction were significantly higher in HX than in HS, which is consistent with phenotypic observations from a previous study. The results indicate that the flower buds of HX are less affected by long-term cold stress than those of HS, and that cold resistance in C. oleifera cultivars varies among tissues or organs.This study will provide a basis for molecular markers and molecular breeding of C. oleifera.

14.
Angew Chem Int Ed Engl ; 62(7): e202217284, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36512442

RESUMO

In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.25 % films show unique photoactivated UOP properties, with phosphorescence quantum yields and lifetimes up to 10.8 % and 845 ms, respectively. It is found that the steady-state luminescence and UOP of PXZ@EP-0.25 % are switchable by light irradiation and thermal annealing. Moreover, the doped films can still produce conspicuous UOP after soaking in water, strong acid and base, and organic solvents for more than two weeks, exhibiting outstanding water and chemical resistance. Inspired by these exciting results, the PXZ@EP-0.25 % has been successfully exploited as an erasable transparent film for light printing.

15.
Angew Chem Int Ed Engl ; 62(7): e202217616, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36537720

RESUMO

Color-tunable dual-mode organic afterglow excited by ultraviolet (UV) and white light was achieved from classical aggregation-caused quenching compounds for the first time. Specifically, two luminescent systems, which could produce significant organic afterglow composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence under ambient conditions, were constructed by doping fluorescein sodium and calcein sodium into aluminum sulfate. Their lifetimes surpassed 600 ms, and the dopant concentrations were as low as 5×10-6  wt %. Moreover, the persistent luminescence colors of the materials could be tuned from blue to green and then to yellow by simply varying the concentrations of guest compounds or the temperature in the range of 260-340 K. Inspired by these exciting results, the afterglow materials were used for UV- and white-light-manipulated anti-counterfeiting and preparation of elastomers with different colors of persistent luminescence.

16.
Neural Regen Res ; 18(4): 889-894, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204859

RESUMO

Exosome-derived long non-coding RNAs (lncRNAs) are extensively engaged in recovery and repair of the injured spinal cord, through different mechanisms. However, to date no study has systematically evaluated the differentially expressed lncRNAs involved in the development of spinal cord injury. Thus, the aim of this study was to identify key circulating exosome-derived lncRNAs in a rat model of spinal cord injury and investigate their potential actions. To this end, we established a rat model of spinal cord hemisection. Circulating exosomes were extracted from blood samples from spinal cord injury and control (sham) rats and further identified through Western blotting and electron microscopy. RNA was isolated from the exosomes and sequenced. The enrichment analysis demonstrated that there were distinctively different lncRNA and mRNA expression patterns between the two groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) functional analysis were performed to determine the possible involvements of upregulated and downregulated lncRNAs in various pathways and different biological processes, as well as their cellular locations and molecular functions. Furthermore, quantitative reverse transcription-polymerase chain reaction showed that the expression of five lncRNAs--ENSRN0T00000067908, XR_590093, XR_591455, XR_360081, and XR_346933--was increased, whereas the expression of XR_351404, XR_591426, XR_353833, XR_590076, and XR_590719 was decreased. Of note, these 10 lncRNAs were at the center of the lncRNA-miRNA-mRNA coexpression network, which also included 198 mRNAs and 41 miRNAs. Taken together, our findings show that several circulating exosomal lncRNAs are differentially expressed after spinal cord injury, suggesting that they may be involved in spinal cord injury pathology and pathogenesis. These lncRNAs could potentially serve as targets for the clinical diagnosis and treatment of spinal cord injury.

17.
ACS Omega ; 7(48): 43531-43547, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506165

RESUMO

The Zhuozishan coalfield at the western margin of the Ordos Basin is one of the main coal-mining areas in China, and recent explorations have revealed the great potential for coalbed methane (CBM) resources in its Carboniferous and Permian strata. In this paper, the controlling factors of CBM enrichment of the major coals are studied in this coalfield and the CBM resources are estimated based on the analysis of the coal petrology and compilation of literature data on the gas content. The result of the coal petrology analysis of 10 samples shows that the vitrinite content of No. 16 coal (71.9-77.3%) is higher than that of No. 9 coal (59.1-65.1%), and the inertinite content of No. 16 coal (18.9-23.5%) is lower than that of No. 9 coal (30.1-34.9%). The R o,max value of No. 16 coal (1.18-1.35%) is higher than that of No. 9 coal (1.04-1.13%), and both coals are of medium rank. Due to greater thickness, deeper burial depth, and better coal petrology characteristics, the No. 16 coal seam of the Taiyuan Formation is selected as the major coal seam for CBM resource estimation, which has a thickness of 1-6 m and a present-day burial depth of 200-1100 m. The gas content of this coal seam varies mostly between 4 and 10 m3/t. Positive correlation between the coal seam thickness as well as present-day burial depth and the gas content suggests that the thick and deeply buried coal seams are favorable for CBM preservation. The ash yield shows an insignificant negative correlation with the gas content, indicating that ash yield is not an important factor for CBM enrichment. The syncline hinges located below the thrust zones show higher gas content due to greater burial depths. In contrast, the anticline hinges at shallower depths tend to have lower gas contents. Based on the combined information about sedimentary environments, structural patterns, and hydrogeology, two CBM accumulation models are put forward in the study area that include syncline-hydraulic plugging below thrust nappe and fault-confined aquifer plugging. The volumetric method is used to estimate the CBM resources, and results indicate that the CBM resource in the whole coalfield is 428.78 × 108 m3, and the total resource abundance is 0.74 × 108 m3/km2. Two favorable areas for the CBM exploration are optimized based on the resource amount and resource abundance. One of the favorable areas is the Kabuqi area in the northern part of the coalfield, and another is the Baiyunwusu area in the central part of the coalfield. These two areas will be the CBM priority exploration areas at the western margin of the Ordos Basin.

18.
Jt Dis Relat Surg ; 33(3): 489-495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345175

RESUMO

OBJECTIVES: This study aims to investigate the effectiveness of open reduction through original fracture line and fixation with locking plate in treatment of extra-articular distal radius fracture (DRF) malunion. PATIENTS AND METHODS: Between January 2015 and December 2018, a total of 69 patients (27 males, 42 females; mean age: 62.0±8.9 years; range, 46 to 70 years) suffering from symptomatic extra-articular DRF malunion were included. All patients were followed for more than six months. Patient's demographics, hand dominance, data including Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH) questionnaire, pain on a Visual Analog Scale (VAS) score, radius height, ulnar variance, wrist range of motion, volar tilt and radial inclination before and after surgery were analyzed. RESULTS: The median follow-up was 14.13 months, and the median time to fracture healing after the operation was 14.25 weeks. The mean QuickDASH score and VAS score were significantly reduced from 63.4±13.97 and 4.6±1.23 preoperatively to 7.8±4.67 and 1.3±0.76 at the final follow-up, respectively. Radius height, ulnar variance, volar tilt, radial inclination and wrist range of motion (flexion, extension, pronation, supination) were all significantly improved (p<0.001). Images showed good radius height, ulnar variance, volar tilt and radial inclination. The range of motion of wrist and forearm were improved substantially. Among 69 patients, two patients received allograft due to osteoporotic bone collapse. No serious complication was developed, except for minor pain in three patients during follow-up. CONCLUSION: Open reduction through original fracture line and fixation with locking plate is a feasible and effective treatment for selective DRF malunion.


Assuntos
Fraturas Mal-Unidas , Fraturas do Rádio , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Fraturas do Rádio/diagnóstico por imagem , Fraturas do Rádio/cirurgia , Fraturas Mal-Unidas/diagnóstico por imagem , Fraturas Mal-Unidas/cirurgia , Rádio (Anatomia) , Fixação Interna de Fraturas/métodos , Dor
19.
Sci Rep ; 12(1): 19641, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385189

RESUMO

The international pesticide trade network (iPTN) is a key factor affecting global food production and food security. The trade relationship is a key component in iPTNs. In a complex international trade environment, we model the impacts of uncertain factors such as trade wars, economic blockades and local wars, as removing vital relationships in the trade network. There are many complex network studies on node centrality, but few on link centrality or link importance. We propose a new method for computing network link centrality. The main innovation of the method is in converting the original network into a dual graph, the nodes in the dual graph corresponding to the links of the original network. Through the dual graph, the node centrality indicators can measure the centrality of the links in the original network. We verify the effectiveness of the network link centrality indicator based on the dual graph in the iPTN, analyze the relationship between the existing network link centrality indicators and the indicator proposed in this paper, and compare their differences. It is found that the trade relationships with larger indicators (hub, outcloseness, outdegree) based on the dual graph have a greater impact on network efficiency than those based on the original pesticide trade networks.


Assuntos
Praguicidas , Comércio , Internacionalidade , Alimentos
20.
BMC Plant Biol ; 22(1): 435, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089577

RESUMO

BACKGROUND: Camellia oleifera Abel. (C. oleifera) is an important traditional woody species in China that produces edible oil. However, the current literature lacks a proper understanding of C. oleifera's ability to adapt to different photoperiods. RESULTS: Our results indicate that the photoperiod can significantly impact flowering time in C. oleifera. We grew a total of nine samples under the short day condition (SD), middle day condition (MD) and long day condition (LD). Transcriptome analysis yielded 66.94 Gb of high-quality clean reads, with an average of over 6.73 Gb of reads for per sample. Following assembly, a total of 120,080 transcripts were obtained and 94,979 unigenes annotated. A total of 3475 differentially expressed genes (DEGs) were identified between the SD_MD, SD_LD, and MD_LD gene sets. Moreover, WGCNA identified ten gene modules. Genes in pink module (92 genes) were positively correlated with SD, and negatively correlated with both MD and LD. Genes in the magenta module (42 genes) were positively correlated with MD and negatively correlated with both LD and SD. Finally, genes in the yellow module (1758 genes) were positively correlated with both SD and MD, but negatively correlated with LD. KEGG enrichment analysis revealed that genes in the pink, magenta, and yellow modules were involved in flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism and circadian rhythm pathways. Additionally, eight hub genes (GI, AP2, WRKY65, SCR, SHR, PHR1, ERF106, and SCL3) were obtained through network analysis. The hub genes had high connectivity with other photoperiod-sensitive DEGs. The expression levels of hub genes were verified by qRT-PCR analysis. CONCLUSION: An increase in light duration promotes earlier flowering of C. oleifera. Flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism, and circadian rhythm pathways may function in the photoperiodic flowering pathway of C. oleifera. We also identified eight hub genes that may play a role in this pathway. Ultimately, this work contributes to our understanding of the photoperiodic flowering pathway of C. oleifera and further informs molecular breeding programs on the plant's photoperiodic sensitivity.


Assuntos
Camellia , Amino Açúcares , Camellia/genética , Flavonoides , Nucleotídeos , Fotoperíodo , Corantes de Rosanilina , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA