Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Mol Med Rep ; 30(2)2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38904198

RESUMO

The TGF­ß/Smad signaling pathway plays a pivotal role in the onset of glomerular and tubulointerstitial fibrosis in chronic kidney disease (CKD). The present review delves into the intricate post­translational modulation of this pathway and its implications in CKD. Specifically, the impact of the TGF­ß/Smad pathway on various biological processes was investigated, encompassing not only renal tubular epithelial cell apoptosis, inflammation, myofibroblast activation and cellular aging, but also its role in autophagy. Various post­translational modifications (PTMs), including phosphorylation and ubiquitination, play a crucial role in modulating the intensity and persistence of the TGF­ß/Smad signaling pathway. They also dictate the functionality, stability and interactions of the TGF­ß/Smad components. The present review sheds light on recent findings regarding the impact of PTMs on TGF­ß receptors and Smads within the CKD landscape. In summary, a deeper insight into the post­translational intricacies of TGF­ß/Smad signaling offers avenues for innovative therapeutic interventions to mitigate CKD progression. Ongoing research in this domain holds the potential to unveil powerful antifibrotic treatments, aiming to preserve renal integrity and function in patients with CKD.


Assuntos
Processamento de Proteína Pós-Traducional , Insuficiência Renal Crônica , Transdução de Sinais , Proteínas Smad , Fator de Crescimento Transformador beta , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Smad/metabolismo , Animais , Fosforilação , Fibrose , Ubiquitinação , Autofagia
2.
Inflamm Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844677

RESUMO

BACKGROUND: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1ß and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.

3.
Front Pharmacol ; 15: 1389354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915464

RESUMO

Background: Sepsis-associated acute kidney injury (SA-AKI) poses an independent risk for mortality due to the absence of highly sensitive biomarkers and a specific treatment plan. Objective: Investigate the association between low molecular weight heparin (LMWH) calcium therapy and prognosis in critically ill SA-AKI patients, and assess the causal relationship through Mendelian randomization (MR) analysis. Methods: A single-center, retrospective, cross-sectional study included 90 SA-AKI patients and 30 septic patients without acute kidney injury (AKI) from the intensive care unit (ICU) of the First Hospital of Lanzhou University. SA-AKI patients were categorized into control or LMWH groups based on LMWH calcium usage. Primary outcome was renal function recovery, with secondary outcomes including 28-day mortality, ICU stay length, number of renal replacement therapy (RRT) recipients, and 90-day survival. MR and related sensitivity analyses explored causal effects. Results: The combination of heparin-binding protein (HBP), heparanase (HPA), and neutrophil gelatinase-associated lipocalin (NGAL) demonstrated high diagnostic value for SA-AKI. MR analysis suggested a potential causal link between gene-predicted HBP and AKI (OR: 1.369, 95%CI: 1.040-1.801, p = 0.024). In the retrospective study, LMWH-treated patients exhibited improved renal function, reduced levels of HPA, HBP, Syndecan-1, and inflammation, along with enhanced immune function compared to controls. However, LMWH did not impact 28-day mortality, 90-day survival, or ICU stay length. Conclusion: LMWH could enhance renal function in SA-AKI patients. MR analysis supports this causal link, underscoring the need for further validation in randomized controlled trials.

4.
Int Immunopharmacol ; 135: 112303, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38776855

RESUMO

Diabetic nephropathy (DN) is a common complication of diabetes, characterized by renal fibrosis and poor patient prognosis. Hederagenin (HDG) has shown promising improvement in chronic kidney disease (CKD) kidney fibrosis, but its mechanism in DN-induced kidney fibrosis remains unclear. In this study, a model of diabetic nephropathy (DN) in mice was induced by intraperitoneal injection of streptozocin (50 mg/kg), while in vitro, high glucose (25 mM) was used to induce HK2 cell damage, simulating tubular injury in DN kidneys. The improvement of HDG treatment intervention was evaluated by observing changes in renal function, pathological structural damage, and the expression of fibrosis-related proteins in renal tubular cells. The results demonstrate that HDG intervention alleviates renal dysfunction and pathological damage in DN mice, accompanied by reduced expression of fibrotic markers α-smooth muscle actin (α-SMA), fibronectin (FN) and Collagen-I. Mechanistically, this study found that HDG can inhibit ferroptosis and fibrosis induced by the ferroptosis inducer Erastin (1 µM) in renal tubular cells. Phosphorylation of Smad3 promotes ferroptosis in renal tubular cells. After using its specific inhibitor SIS3 (4 µM), the expression of downstream target protein NADPH oxidase 4 (NOX4) significantly decreases, while the level of glutathione peroxidase 4 (GPX4) is notably restored, mitigating ferroptosis. Smad3 overexpression attenuates the therapeutic effect of HDG on tubular cell fibrosis induced by high glucose. These results demonstrate HDG inhibits Smad3 phosphorylation, thereby reducing the expression of NOX4 and enhancing the expression of GPX4, ultimately attenuating ferroptosis induced renal fibrosis. These findings suggest that HDG offer therapeutic potential for DN renal fibrosis by targeting Smad3-mediated ferroptosis in renal tubular cells.


Assuntos
Nefropatias Diabéticas , Ferroptose , Fibrose , Camundongos Endogâmicos C57BL , NADPH Oxidase 4 , Ácido Oleanólico , Transdução de Sinais , Proteína Smad3 , Animais , Ferroptose/efeitos dos fármacos , Proteína Smad3/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Linhagem Celular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo
5.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38639174

RESUMO

Macrophage­inducible C­type lectin receptor (Mincle) is predominantly found on antigen­presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor­κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage­related molecules discharged by injured cells, such as Sin3­associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis­associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long­lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.


Assuntos
Inflamação , Mycobacterium tuberculosis , Animais , Camundongos , Fibrose , Imunidade Inata , Inflamação/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/metabolismo , NF-kappa B
6.
J Hazard Mater ; 470: 134269, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613952

RESUMO

Mercury (Hg) is one of the most widespread pollutants that pose serious threats to public health and the environment. People are inevitably exposed to Hg via different routes, such as respiration, dermal contact, drinking or diet. Hg poisoning could cause gingivitis, inflammation, vomiting and diarrhea, respiratory distress or even death. Especially during the developmental stage, there is considerable harm to the brain development of young children, causing serious symptoms such as intellectual disability and motor impairments, and delayed neural development. Therefore, it's of great significance to develop a specific, quick, practical and labor-saving assay for monitoring Hg2+. Herein, a mitochondria-targeted dual (excitation 700 nm and emission 728 nm) near-infrared (NIR) fluorescent probe JZ-1 was synthesized to detect Hg2+, which is a turn-on fluorescent probe designed based on the rhodamine fluorophore thiolactone, with advantages of swift response, great selectivity, and robust anti-interference capability. Cell fluorescence imaging results showed that JZ-1 could selectively target mitochondria in HeLa cells and monitor exogenous Hg2+. More importantly, JZ-1 has been successfully used to monitor gastrointestinal damage of acute mercury poisoning in a drug-induced mouse model, which provided a great method for sensing Hg species in living subjects, as well as for prenatal diagnosis.


Assuntos
Corantes Fluorescentes , Intoxicação por Mercúrio , Mercúrio , Mitocôndrias , Corantes Fluorescentes/química , Mitocôndrias/efeitos dos fármacos , Humanos , Animais , Células HeLa , Intoxicação por Mercúrio/diagnóstico por imagem , Mercúrio/toxicidade , Imagem Óptica , Camundongos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/diagnóstico por imagem , Trato Gastrointestinal/metabolismo , Feminino , Gastroenteropatias/diagnóstico por imagem , Gastroenteropatias/induzido quimicamente , Rodaminas/química , Rodaminas/toxicidade
7.
Ren Fail ; 46(1): 2331612, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38527916

RESUMO

BACKGROUND: Circular RNAs (CircRNAs) have been shown to be involved in the development of chronic kidney disease (CKD). This study aimed to investigate the role of Circ1647 in renal fibrosis, which is a hallmark of CKD. METHODS: In this study, we established a unilateral ureteral obstruction (UUO) model and delivered Circ1647 RfxCas13d knockdown plasmid into renal parenchymal cells via retrograde injection through the ureter followed by electroporation. After that, the pathological changes were determined by Hematoxylin and Eosin. Meanwhile, Immunohistochemistry, qRT-PCR and Western blot were conducted to assess the degree of fibrosis. In addition, overexpressing of Circ1647 in renal tubular epithelial cells (TCMK1) was performed to investigate the underlying mechanisms of Circ1647. RESULTS: Our results displayed that electroporation-mediated knockdown of Circ1647 by RfxCas13d knockdown plasmid significantly inhibited renal fibrosis in UUO mice as evidenced by reduced expression of fibronectin and α-SMA (alpha-smooth muscle actin). Conversely, overexpression of Circ1647 in TCMK1 cells promoted the fibrosis. In terms of mechanism, Circ1647 may mediate the PI3K/AKT Signaling Pathway as demonstrated by the balance of the phosphorylation of PI3K and AKT in vivo and the aggravated phosphorylation of PI3K and AKT in vitro. These observations were corroborated by the effects of the PI3K inhibitor LY294002, which mitigated fibrosis post Circ1647 overexpression. CONCLUSION: Our study suggests that Circ1647 plays a significant role in renal fibrosis by mediating the PI3K/AKT signaling pathway. RfxCas13d-mediated inhibition of Circ1647 may serve as a therapeutic target for renal fibrosis in CKD.


Assuntos
RNA Circular , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Fibrose , Rim/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , RNA Circular/genética , RNA Circular/metabolismo
8.
Phytother Res ; 38(6): 2656-2668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487990

RESUMO

Tubular ferroptosis significantly contributes to renal inflammation and fibrosis, critical factors in chronic kidney disease (CKD). This study aims to investigate Kaempferitrin, a potent flavonoid glycoside from Bauhinia forficata leaves, renowned for its anti-inflammatory and antitumor effects, and to elucidate its potential mechanisms in mitigating inflammation and fibrosis induced by tubular ferroptosis. The study investigated Kaempferitrin's impact on tubular ferroptosis using a unilateral ureteral obstruction (UUO) model-induced renal inflammation and fibrosis. In vitro, erastin-induced ferroptosis in primary tubular epithelial cells (TECs) was utilized to further explore Kaempferitrin's effects. Additionally, NADPH oxidase 4 (NOX4) transfection in TECs and cellular thermal shift assay (CETSA) were conducted to identify Kaempferitrin's target protein. Kaempferitrin effectively improved renal function, indicated by reduced serum creatinine and blood urea nitrogen levels. In the UUO model, it significantly reduced tubular necrosis, inflammation, and fibrosis. Its renoprotective effects were linked to ferroptosis inhibition, evidenced by decreased iron, 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) levels, and increased glutathione (GSH). Kaempferitrin also normalized glutathione peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11(SLC7A11) expression, critical ferroptosis mediators. In vitro, it protected TECs from ferroptosis and consistently suppressed NOX4 expression. NOX4 transfection negated Kaempferitrin's antiferroptosis effects, while CETSA confirmed Kaempferitrin-NOX4 interaction. Kaempferitrin shows promise as a nephroprotective agent by inhibiting NOX4-mediated ferroptosis in tubular cells, offering potential therapeutic value for CKD.


Assuntos
Ferroptose , Fibrose , NADPH Oxidase 4 , Obstrução Ureteral , Animais , Ferroptose/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , Camundongos , Fibrose/tratamento farmacológico , Obstrução Ureteral/tratamento farmacológico , Masculino , Quempferóis/farmacologia , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Bauhinia/química , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Células Epiteliais/efeitos dos fármacos
9.
Int Wound J ; 21(3): e14782, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468366

RESUMO

Complex fractures present significant challenges in orthopaedic surgery, particularly in terms of postoperative wound healing. Nutritional status plays a crucial role in the recovery process, with early nutritional support potentially influencing wound healing outcomes. This meta-analysis aimed to assess the impact of early nutritional interventions on postoperative wound healing and scar formation in patients with complex fractures. From an initial pool of 1742 articles, 7 studies were selected for analysis. The results revealed that preoperative nutritional support significantly improved early wound healing, as indicated by lower REEDA scores (SMD = -14.06, 95% CI: [-16.79, -11.32], p < 0.01) 1 week post-surgery. Furthermore, there was a notable reduction in scar formation, as demonstrated by lower Manchester Scar Scale scores (SMD = -25.03, 95% CI: [-30.32, -19.74], p < 0.01) 3 months post-surgery. These findings highlight the importance of incorporating nutritional strategies into the management of complex fractures to optimize postoperative recovery.


Assuntos
Fraturas Ósseas , Procedimentos Ortopédicos , Humanos , Cicatriz , Cicatrização , Fraturas Ósseas/cirurgia , Apoio Nutricional
10.
Int Wound J ; 21(2): e14778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356179

RESUMO

A meta-analysis was conducted to comprehensively evaluate the impact of wound drainage on postoperative wound infection and healing in patients undergoing spinal surgery. Computer searches were performed, from database inception to October 2023, in EMBASE, Google Scholar, Cochrane Library, PubMed, Wanfang and China National Knowledge Infrastructure databases for studies related to the application of wound drainage in spinal surgery. Two researchers independently screened the literature, extracted data and conducted quality assessments. Stata 17.0 software was employed for data analysis. Overall, 11 articles involving 2102 spinal surgery patients were included. The analysis showed that, compared to other treatment methods, the use of wound drainage in spinal surgery patients significantly shortened the wound healing time (standardized mean difference [SMD]: -1.35, 95% confidence intervals [CI]: -1.91 to -0.79, p < 0.001). However, there was no statistical difference in the incidence of wound infection (odds ratio: 1.35, 95% CI: 0.83-2.19, p = 0.226). This study indicates that wound drainage in patients undergoing spinal surgery is effective, can accelerate wound healing and is worth promoting in clinical practice.


Assuntos
Procedimentos Neurocirúrgicos , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/epidemiologia , Cicatrização , Fatores de Tempo , Drenagem/métodos
11.
BMC Public Health ; 24(1): 436, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347500

RESUMO

BACKGROUND: Edaravone dexborneol and dl-3-n-butylphthalide are two innovative brain cytoprotective drugs from China that have been approved and widely prescribed for acute ischemic stroke, and the cost of the two drugs are partially paid by the Chinese medical insurance system. This study aimed to investigate and compare the cost-effectiveness of edaravone dexborneol versus dl-3-n-butylphthalide for acute ischemic stroke from the Chinese healthcare system's perspective. METHODS: A model combining a short-term decision tree model with 90 days and a long-term Markov model with a life-time horizon (40 years) was developed to simulate the cost-effectiveness of edaravone dexborneol versus dl-3-n-butylphthalide for acute ischemic stroke over a lifetime horizon. Since the absence of a head-to-head clinical comparison of two therapies, an unanchored matching-adjusted indirect comparison (MAIC) was conducted by adjusting the patient characteristics using individual patient data from pivotal phase III trial of edaravone dexborneol and published aggregated data of dl-3-n-butylphthalide. Health outcomes were measured in quality-adjusted life years (QALYs). Utilities and costs (Chinese Yuan, CNY) were derived from publications and open-access database. One-way and probabilistic sensitivity analyses were performed to evaluate the robustness of results. RESULTS: Compared with patients in dl-3-n-butylphthalide arm, edaravone dexborneol arm was found to be cost-effective in 90 days and highly cost-effective as the study horizons extended. With a similar direct medical cost, patients in edaravone dexborneol arm slightly gained an additional 0.1615 QALYs in life-time. In the long term (40 years), patients in edaravone dexborneol arm and dl-3-n-butylphthalide arm yielded 8.0351 and 7.8736 QALYs with the overall direct medical cost of CNY 29,185.23 and CNY 29,940.28, respectively. The one-way sensitivity analysis suggested that the incremental cost-effectiveness ratio was most sensitive to the price of edaravone dexborneol and dl-3-n-butylphthalide. CONCLUSION: Edaravone dexborneol is a cost-effective alternative compared with dl-3-n-butylphthalide for acute ischemic stroke patients in current medical setting of China.


Assuntos
Benzofuranos , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Edaravone/uso terapêutico , Análise Custo-Benefício , Atenção à Saúde , Acidente Vascular Cerebral/tratamento farmacológico , Anos de Vida Ajustados por Qualidade de Vida
12.
ACS Omega ; 8(48): 45914-45923, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075817

RESUMO

Bacterial infection has always been one of the most serious threats faced by humans. Bacterial targeting is a promising strategy to enhance treatment efficacy and reduce the emergence of drug resistance. However, the traditional antibiotic targeting efficiency is poor, and it is challenging to achieve therapeutic concentrations of both drugs simultaneously in the same tissue due to differences in drug metabolism. This study aims to construct bacteria-targeted liposomes to enhance antibiotic delivery. In this study, anionic liposomes were constructed using the thin-film dispersion method, and the cationic antimicrobial peptide polymyxin B (PMB) was adsorbed onto the liposome surface through anionic-cationic electrostatic interaction as a carrier for fosfomycin (FOS), enabling bacteria-targeted drug delivery. The targeted effect of polymyxin B liposomes (PMB-Lipo) on Acinetobacter baumannii was evaluated in vitro and in vivo. The bactericidal activity of polymyxin B adsorbed fosfomycin liposomes (PMB-FOS-Lipo) in vitro and in vivo was compared with PMB and FOS mixture solution (PMB-FOS-Solution), and the anti-infection and anti-inflammatory effects were assessed. We also explored the issue of PMB nephrotoxicity using a series of biochemical indicators in mice. In vitro and in vivo experiments showed that PMB-Lipo effectively targeted Acinetobacter baumannii. PMB-FOS-Lipo exhibited better therapeutic efficacy compared to free PMB and FOS. Finally, adsorbing polymyxin B onto the liposome surface significantly reduced its severe nephrotoxicity. PMB-Lipo can effectively target Acinetobacter baumannii, and the encapsulated fosfomycin in liposomes synergizes with polymyxin B, enhancing antibacterial efficacy and reducing adverse drug reactions. We believe this antibacterial strategy can provide new insights into bacteria-targeted treatment.

13.
BMC Geriatr ; 23(1): 827, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066430

RESUMO

BACKGROUND: With the rapid aging trend of China's population, the issue of drug rational use in older adults has become more and more prominent. Parkinson's disease (PD) is the one of the most common age-related neurodegenerative disorders. Pharmaceutical treatment plays a cardinal role in alleviating motor and non-motor symptoms to improve the quality of life of patients with PD. Patients with PD have complex medical needs yet little is known about the use of potentially inappropriate medications (PIM) among them in China. We quantify the prevalence of PIM use and identify its predictors among older persons with PD in China. METHODS: We conducted a cross-sectional analysis using a national representative database of all medical insurance beneficiaries across China, extracting records of ambulatory visits of older adults with PD between 2015 and 2017. Beneficiaries aged 65 and above were eligible for inclusion. The prevalence of patients exposed to overall PIMs and PIMs related to motor and cognitive impairment was calculated based on Beers Criteria 2015 version. Potential predictors of PIM concerning patients' characteristics were estimated using multivariate logistic regression. RESULTS: A total of 14,452 older adults with PD were included. In total, 8,356 (57.8%) patients received at least one PIM; 2,464 (17.1%) patients received at least one motor-impairing PIM and 6,201 (42.9%) patients received at least one cognition-impairing PIM. The prevalence of overall PIM use was higher in patients of older age group (54.7% [65-74] vs. 59.5% [75-84; OR, 1.22; 95% CI, 1.14-1.31] vs.65.5% [≥ 85; OR, 1.58; 95% CI, 1.38-1.80) and females (61.4% [female] vs. 55.0% [males; OR, 0.77; 95% CI, 0.72-0.82). CONCLUSIONS: Prescribing PIMs for older adults with PD was common in China, especially for females and older age groups, yet younger patients were more inclined to be prescribed with motor or cognition-impaired PIMs. Our findings represent a clear target awaiting multidimensional efforts to promote the rational prescribing of medications for this vulnerable population.


Assuntos
Doença de Parkinson , Lista de Medicamentos Potencialmente Inapropriados , Masculino , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Prescrição Inadequada , Estudos Transversais , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/epidemiologia , Qualidade de Vida , Estudos Retrospectivos , China/epidemiologia , Programas Nacionais de Saúde
14.
Chem Commun (Camb) ; 59(85): 12735-12738, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37800994

RESUMO

A mitochondria-targeted far-red fluorescent probe LY-1 with AIE character was formulated to track cell viscosity alterations with excellent sensitivity and selectivity, which was used to discriminate between mitophagy and ferroptosis in cancer cells. Probe LY-1 is expected to be an effective vehicle for the diagnosis of mitochondrial viscosity relevant diseases.


Assuntos
Ferroptose , Neoplasias , Humanos , Corantes Fluorescentes , Mitofagia , Mitocôndrias , Viscosidade , Células HeLa , Neoplasias/diagnóstico por imagem
15.
Heliyon ; 9(8): e19154, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664741

RESUMO

Introduction: To investigate the inhibitory effect of sorafenib combined with PEGylated resveratrol on renal cell carcinoma (RCC) and its potential mechanism. Methods: MTT assay was used to detect the inhibitory effects of PEGylated resveratrol and sorafenib alone or combination on proliferation of RCC cells. Scratch and transwell assays were performed to examine the effects on the in vitro migration and invasion of RCC cells, respectively. The anti-tumor activity as well as splenic lymphocyte proliferation of the combination therapy was evaluated in the RCC xenograft mouse model. Western blotting method was used to detect changes in proteins involved in the antitumor efficacy related signaling pathways. Results: Inhibitory effects of PEGylated resveratrol combined with sorafenib incubation on the proliferation of Renca cells was synergistically enhanced compared with the mono-incubation group (both P < 0.01, CI < 1). Scratch and transwell assays revealed that combined incubation could significantly inhibit the migration and invasion of 786-O cells in vitro. Combined PEGylated resveratrol with sorafenib could significantly inhibit the growth of Renca renal carcinoma in mice with the tumor growth inhibition (TGI) of 85.5% and one achieved complete remission on D14, while the two monotherapies were both below 43% on D14, suggesting that current combination may have synergistic anti-renal carcinoma activity. Compared with the control group, PEGylated resveratrol combined with sorafenib in vivo promoted the proliferation of unactivated splenic lymphocytes and the proliferation of lymphocytes stimulated with concanavalin A and lipopolysaccharide. Western blotting results showed that combination therapy may suppress the growth of renal cell carcinoma by inhibiting AKT/mTOR/p70S6k-4EBP-1 and c-Raf7MEK/ERK signaling pathways. Conclusion: PEGylated resveratrol combined with sorafenib can achieve synergistic anti-RCC activity, and the mechanism may be related to the inhibition of Akt/mTOR/p70S6k-4EBP-1 and c-Raf7MEK/ERK signaling pathways.

16.
Front Pharmacol ; 14: 1202676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637421

RESUMO

Pulmonary hypertension (PH) is a pathophysiological condition of increased pulmonary circulation vascular resistance due to various reasons, which mainly leads to right heart dysfunction and even death, especially in critically ill patients. Although drug interventions have shown some efficacy in improving the hemodynamics of PH patients, the mortality rate remains high. Hence, the identification of new targets and treatment strategies for PH is imperative. Heparanase (HPA) is an enzyme that specifically cleaves the heparan sulfate (HS) side chains in the extracellular matrix, playing critical roles in inflammation and tumorigenesis. Recent studies have indicated a close association between HPA and PH, suggesting HPA as a potential therapeutic target. This review examines the involvement of HPA in PH pathogenesis, including its effects on endothelial cells, inflammation, and coagulation. Furthermore, HPA may serve as a biomarker for diagnosing PH, and the development of HPA inhibitors holds promise as a targeted therapy for PH treatment.

17.
Adv Healthc Mater ; 12(29): e2301785, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37590153

RESUMO

Nanoparticulate antitumor photodynamic therapy (PDT) is suffering from a very short lifetime, limited diffusion distance of reactive oxygen species (ROS). Herein, a hypoxia/ROS/pH triple-responsive metal-organic framework (MOF) is designed to facilitate the on-demand release of photosensitizers and hence enhanced PDT efficacy. Tailored azo-containing imidazole ligand is coordinated with zinc to form MOF where photosensitizer (Chlorin e6/Ce6) is encapsulated. Azo can be reduced by overexpressed azoreductase in hypoxic tumor cells, resulting in depletion of glutathione (GSH) and thioredoxin (Trx) which are major antioxidants against ROS oxidative damage in PDT, resulting in rapid cargo release and additional efficacy amplification. The imidazole ionization causes a proton sponge effect to ensure the disintegration of the nanocarriers in acidic organelles, allowing the rapid release of Ce6 through lysosome escape. Under light irradiation, ROS produced by Ce6 may oxidize imidazole to urea, resulting in rapid cargo release. All of the triggers are expected to show interactive synergism. The pH- and hypoxia-responsiveness can improve the release rate of Ce6 for enhanced PDT therapy, whereas the consumption of oxygen by PDT may induce elevated hypoxia and hence in turn enhanced cargo release. This work highlights the role of triple-responsive nanocarriers for triggered photosensitizer release and improved antitumor PDT efficacy.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Hipóxia/tratamento farmacológico , Concentração de Íons de Hidrogênio , Imidazóis/farmacologia , Linhagem Celular Tumoral
18.
World J Stem Cells ; 15(6): 617-631, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37424951

RESUMO

BACKGROUND: Bone marrow-derived mesenchymal stem cells (MSCs) show podocyte-protective effects in chronic kidney disease. Calycosin (CA), a phytoestrogen, is isolated from Astragalus membranaceus with a kidney-tonifying effect. CA preconditioning enhances the protective effect of MSCs against renal fibrosis in mice with unilateral ureteral occlusion. However, the protective effect and underlying mechanism of CA-pretreated MSCs (MSCsCA) on podocytes in adriamycin (ADR)-induced focal segmental glomerulosclerosis (FSGS) mice remain unclear. AIM: To investigate whether CA enhances the role of MSCs in protecting against podocyte injury induced by ADR and the possible mechanism involved. METHODS: ADR was used to induce FSGS in mice, and MSCs, CA, or MSCsCA were administered to mice. Their protective effect and possible mechanism of action on podocytes were observed by Western blot, immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction. In vitro, ADR was used to stimulate mouse podocytes (MPC5) to induce injury, and the supernatants from MSC-, CA-, or MSCsCA-treated cells were collected to observe their protective effects on podocytes. Subsequently, the apoptosis of podocytes was detected in vivo and in vitro by Western blot, TUNEL assay, and immunofluorescence. Overexpression of Smad3, which is involved in apoptosis, was then induced to evaluate whether the MSCsCA-mediated podocyte protective effect is associated with Smad3 inhibition in MPC5 cells. RESULTS: CA-pretreated MSCs enhanced the protective effect of MSCs against podocyte injury and the ability to inhibit podocyte apoptosis in ADR-induced FSGS mice and MPC5 cells. Expression of p-Smad3 was upregulated in mice with ADR-induced FSGS and MPC5 cells, which was reversed by MSCCA treatment more significantly than by MSCs or CA alone. When Smad3 was overexpressed in MPC5 cells, MSCsCA could not fulfill their potential to inhibit podocyte apoptosis. CONCLUSION: MSCsCA enhance the protection of MSCs against ADR-induced podocyte apoptosis. The underlying mechanism may be related to MSCsCA-targeted inhibition of p-Smad3 in podocytes.

19.
Exp Ther Med ; 26(2): 379, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37456170

RESUMO

Sepsis-related acute kidney injury (S-AKI) is a common and significant complication of sepsis in critically ill patients, which can often only be treated with antibiotics and medications that reduce S-AKI symptoms. The precise mechanism underlying the onset of S-AKI is still unclear, thus hindering the development of new strategies for its treatment. Therefore, it is necessary to explore the pathogenesis of S-AKI to identify biomarkers and therapeutic targets for its early diagnosis and treatment. Heparanase (HPA), the only known enzyme that cleaves the side chain of heparan sulfate, has been widely studied in relation to tumor metabolism, procoagulant activity, angiogenesis, inflammation and sepsis. It has been reported that HPA plays an important role in the progression of S-AKI. The aim of the present review was to provide an overview of the function of HPA in S-AKI and to summarize its underlying molecular mechanisms, including mediating inflammatory response, immune response, autophagy and exosome biogenesis. It is anticipated that emerging discoveries about HPA in S-AKI will support HPA as a potential biomarker and therapeutic target to combat S-AKI.

20.
Mol Ther Nucleic Acids ; 33: 180-190, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449045

RESUMO

Transforming growth factor ß (TGF-ß)/Smad3 plays a vital role in hypertensive cardiac fibrosis. The long non-coding RNA (lncRNA) Erbb4-IR is a novel Smad3-dependent lncRNA that mediates kidney fibrosis. However, the role of Erbb4-IR in hypertensive heart disease remains unexplored and was investigated in the present study by ultrasound-microbubble-mediated silencing of cardiac Erbb4-IR in hypertensive mice induced by angiotensin II. We found that chronic angiotensin II infusion induced hypertension and upregulated cardiac Erbb4-IR, which was associated with cardiac dysfunction, including a decrease in left ventricle ejection fraction (LVEF) and LV fractional shortening (LVFS) and an increase in LV mass. Knockdown of cardiac Erbb4-IR by Erbb4-IR short hairpin RNA (shRNA) gene transfer effectively improved the angiotensin II-induced deterioration of cardiac function, although blood pressure was not altered. Furthermore, silencing cardiac Erbb4-IR also inhibited angiotensin II-induced progressive cardiac fibrosis, as evidenced by reduced collagen I and III, alpha-smooth muscle actin (α-SMA), and fibronectin accumulation. Mechanistically, improved hypertensive cardiac injury by specifically silencing cardiac Erbb4-IR was associated with increased myocardial Smad7 and miR-29b, revealing that Erbb4-IR may target Smad7 and miR-29b to mediate angiotensin II-induced hypertensive cardiac fibrosis. In conclusion, Erbb4-IR is pathogenic in angiotensin II (Ang II)-induced cardiac remodeling, and targeting Erbb4-IR may be a novel therapy for hypertensive cardiovascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA