Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(34): 44780-44790, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39143922

RESUMO

The state-of-the-art triboelectric nanogenerator (TENG) technology has numerous advantages and creates new prospects for the rapid development of the Internet of Things (IoT) in marine environments. Here, to accelerate the application process of TENG, an elaborately designed multilayered sleeve-structured hybrid nanogenerator (M-HNG) is developed to efficiently and persistently harvest marine energy. The M-HNG integrates an electromagnetic nanogenerator (EMG) with four coils and a multilayered sleeve-structured TENG (MS-TENG) with three freestanding layer units to increase spatial utilization efficiency. Moreover, rabbit fur strips are introduced to enhance the output performance and strengthen the durability of TENG. Therefore, the MS-TENG has high durability due to its soft-contact structure, maintaining its performance even after 240,000 cycles. When a 1000 µF capacitor is charged by M-HNG utilizing a power management circuit (PMC), the stored energy is increased from 2.62 mJ to 140.11 mJ, representing a significant improvement of 52-fold. The M-HNG triggered by water waves has successfully powered various small electronic devices, including 1200 LED lights, nine thermo-hygrometers, a water quality testing pen, and water level alarms. The proposed M-HNG effectively harvests low-frequency water wave energy, introducing an innovative concept for constructing a hybrid TENG with enhanced density and durability.

2.
Sensors (Basel) ; 24(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931554

RESUMO

To achieve large-scale development of triboelectric nanogenerators (TENGs) for water wave energy harvesting and powering the colossal sensors widely distributed in the ocean, facile and scalable TENGs with high output are urgently required. Here, an elastic self-recovering hybrid nanogenerator (ES-HNG) is proposed for water wave energy harvesting and marine environmental monitoring. The elastic skeletal support of the ES-HNG is manufactured using three-dimensional (3D) printing technology, which is more conducive to the large-scale integration of the ES-HNG. Moreover, the combination of a TENG and an electromagnetic generator (EMG) optimizes the utilization of device space, leading to enhanced energy harvesting efficiency. Experimental results demonstrate that the TENG achieves a peak power output of 42.68 mW, and the EMG reaches a peak power output of 4.40 mW. Furthermore, various marine environment monitoring sensors, such as a self-powered wireless meteorological monitoring system, a wireless alarm system, and a water quality monitoring pen, have been successfully powered by the sophisticated ES-HNG. This work introduces an ES-HNG for water wave energy harvesting, which demonstrates potential in marine environment monitoring and offers a new solution for the sustainable development of the marine internet of things.

3.
Food Chem ; 397: 133723, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914454

RESUMO

Chrysanthemum tea is a tranditional Chinese health drink, which contains luteolin, a flavonoid with vesatile health benefit activities. Herein, A sensitive electrochemical sensor based on composite materials consisting of MoO3 nanorods, poly (3, 4-ethylene dioxyethiophene)(PEDOT), and γ-cyclodextrin metal-organic framework(CD-MOF) was prepared.The materials were characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). Due to the synergisticeffects of the materials, the sensor showed a wide linear range of 0.4 nM -1800 nM and a low detection limit (LOD) of 0.1 nM (S/N = 3) for luteolin under optimized conditions. Besides, the influences of some coexistent phenolic compounds and common metal ions on luteolin detection were evaluated and no significant interference was observed. Finally, the sensor was successfully applied to the detection of luteolin in real Chrysanthemum tea samples.


Assuntos
Chrysanthemum , Ciclodextrinas , Estruturas Metalorgânicas , Compostos Bicíclicos Heterocíclicos com Pontes , Ciclodextrinas/química , Técnicas Eletroquímicas/métodos , Etilenos , Luteolina , Estruturas Metalorgânicas/química , Polímeros , Chá
4.
Food Chem ; 389: 133086, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35526285

RESUMO

Gallic acid (GA) is found in a wide range of natural plants and is relevant to the health of human beings. Here, a photoelectrochemical sensing platform based on g-C3N4@CNT heterojunction has been prepared for the highly sensitive and selective detection of GA. Under the light of xenon lamp, the photocurrent of g-C3N4@CNT is 7 times higher than that of g-C3N4. And the sensor generates 4 times more photocurrent in the presence of GA than without GA. This sensor has a wide linear range from 10 nM to 10 µM with a limit of detection as low as 2 nM. Also, the abundant amino groups of g-C3N4 provide excellent selectivity for the sensor. Furthermore, the sensor can be used for the analysis of GA in black tea samples, which provides a novel and rapid method for the detection of GA in food samples.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Antioxidantes , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ácido Gálico , Humanos , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA